Skip to main content

Advertisement

Log in

The Role of Phthalocyanine-Gold Nanoconjugates (Pc-Au NCs) in Ameliorating the Hepatic and Renal Toxicity-Induced by Silver Nanoparticles (Ag NPs) in Male Rats

  • Research
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Recently, gold nanoparticles (Au Nps) have gained tremendous attention for its unique properties as a safe nanocarrier for delivering drugs that are used in different disease diagnoses. Although silver nanoparticles (Ag NPs) have been generally applied due to their strong antibacterial, antiviral, antifungal, and antimicrobial properties, their toxicity is a subject of sustained debate, thus requiring further studies. The present study aims to evaluate the potential protective effect of gold nanoparticles and phthalocyanine-gold nanoconjugates (Pc-Au NCs) against the hepatorenal toxicity of silver nanoparticles in male rats. Herein, 60 adult male Rattus norvegicus rats were divided into six equal groups (n = 10/group); the first group was kept as control, the second received gold nanoparticles (Au NPs) intraperitoneally (10 µg/kg) daily for 3 weeks, the third group is gold-phthalocyanine (Pc-Au) group where rats were injected intraperitoneally with gold-phthalocyanine for 3 weeks (10 µg/kg), the fourth group received silver nanoparticles (Ag NPs) (4 mg/kg) daily intraperitoneally for 3 weeks, the fifth group is silver + gold nanoparticles group (Ag + Au), and the sixth is silver + gold-phthalocyanine nanoconjugates (Ag + Pc-Au) group in which rats were intraperitoneally injected firstly with Ag NPs (4 mg/kg) for 3 weeks then with gold or gold-phthalocyanine for another 3 weeks (10 µg/kg). Our results revealed that Ag NPs could increase the serum AST, ALT, ALP, urea, creatinine, and lipid profile and significantly decreased the total protein and albumin. Moreover, histopathological alterations detected in the kidney and the liver of the Ag NPs group included vascular congestion, inflammatory cell infiltration, and tissue distortion. Alongside, exposure to Ag NPs induces hepatic and renal oxidative stress by suppressing the antioxidant-related genes including glutathione peroxidase 1 (gpx1), superoxide dismutase (sod), and catalase (cat). Ag NPs also upregulated the hepatic and renal genes involved in inflammation such as the interleukin-6 (il-6) and tumor necrosis factor-α (tnf-α), nuclear factor kappa B (nf-κβ), apoptosis such as the BCL2 associated X (bax), casp3, and other related to metabolism including asparagine synthetase (asns), suppressor of cytokine signaling 3 (socs3), MYC proto-oncogene (myc), and C–C motif chemokine ligand 2 (ccl2). On the other hand, treatment with Au NPs and Pc-Au NCs could effectively ameliorate the hepatorenal damages induced by Ag NPs and improve liver and kidney architecture and function, especially in the Pc-Au NCs group. Briefly, our study revealed the underlined mechanism of Ag NPs hepatotoxic and nephrotoxic effects and that Pc-Au NCs could alleviate these adverse impacts via their anti-oxidative, anti-apoptotic, and anti-inflammatory activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The data presented in this study are available on request from the corresponding author.

References

  1. McNeil SE (2005) Nanotechnology for the biologist. J Leukoc Biol 78:585–594

    Article  CAS  PubMed  Google Scholar 

  2. Mori Y, Ono T, Miyahira Y, Nguyen VQ, Matsui T, Ishihara M (2013)Antiviral activity of silver nanoparticle/chitosan composites against H1N1 influenza A virus. Nanoscale Res Lett 20;8(1):93

  3. Ayala-Núñez NV, Lara Villegas HH, del Carmen Ixtepan Turrent L, Rodríguez Padilla C (2009) Silver nanoparticles toxicity and bactericidal effect against methicillin-resistant Staphylococcus aureus: nanoscale does matter. Nanobiotechnology 5:2–9

  4. Mori Y, Ono T, Miyahira Y, Nguyen VQ, Matsui T, Ishihara M (2013) Antiviral activity of silver nanoparticle/chitosan composites against H1N1 influenza A virus. Nanoscale Res Lett 20;8(1):93

  5. Kim K-J, Sung WS, Moon S-K, Choi J-S, Kim JG, Lee DG (2008) Antifungal effect of silver nanoparticles on dermatophytes. J Microbiol Biotechnol 18:1482–1484

    CAS  PubMed  Google Scholar 

  6. Lv Y, Liu H, Wang Z, Liu S, Hao L, Sang Y, Liu D, Wang J, Boughton R (2009) Silver nanoparticle-decorated porous ceramic composite for water treatment. J Membr Sci 331:50–56

    Article  CAS  Google Scholar 

  7. Yang H-L, Chun-Te Lin J, Huang C (2009) Application of nanosilver surface modification to RO membrane and spacer for mitigating biofouling in seawater desalination. Water Res 43:3777–3786

    Article  CAS  PubMed  Google Scholar 

  8. Holtz RD, Lima BA, Souza Filho AG, Brocchi M, Alves OL (2012) Nanostructured silver vanadate as a promising antibacterial additive to water-based paints. Nanomedicine: Nanotechnol Biol Med 8:935–940

    Article  CAS  Google Scholar 

  9. Korani M, Rezayat S, Gilani K, Bidgoli SA, Adeli S (2011) Acute and subchronic dermal toxicity of nanosilver in guinea pig. Int J Nanomed 6:855–862

  10. Floresrespez LZ, Espinozaal of nanomedicine Bidgoli SA, Adeli S (2019) Acute and subchronic dermal tive oxygen species, oxidative stress, beneficial and toxicological effects. Mini review. J Appl Toxicol 39:16–26

  11. Noshy PA, Yasin NA, Rashad MM, Shehata AM, Salem FM, El-Saied EM, Mahmoud MY (2023) Zinc nanoparticles ameliorate oxidative stress and apoptosis induced by silver nanoparticles in the brain of male rats. Neurotoxicology 95:193–204

    Article  CAS  PubMed  Google Scholar 

  12. Garcia EB, Alms C, Hinman AW, Kelly C, Smith A, Vance M, Loncarek J, Marr LC, Cimini D (2019) Single-cell analysis reveals that chronic silver nanoparticle exposure induces cell division defects in human epithelial cells. Int J Environ Res Public Health 16:2061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wen H, Dan M, Yang Y, Lyu J, Shao A, Cheng X, Chen L, Xu L (2017) Acute toxicity and genotoxicity of silver nanoparticle in rats. PLoS ONE 12:e0185554

    Article  PubMed  PubMed Central  Google Scholar 

  14. Tiwari R, Singh RD, Khan H, Gangopadhyay S, Mittal S, Singh V, Arjaria N, Shankar J, Roy SK, Singh D (2017) Oral subchronic exposure to silver nanoparticles causes renal damage through apoptotic impairment and necrotic cell death. Nanotoxicology 11:671–686

    Article  CAS  PubMed  Google Scholar 

  15. Huaizhi Z, Yuantao N (2001) China’s ancient gold drugs. Gold Bulletin 34:24–29

    Article  Google Scholar 

  16. Bartneck M, Warzecha KT, Tacke F (2014) Therapeutic targeting of liver inflammation and fibrosis by nanomedicine. Hepatobiliary Surg Nutr 3:364

    PubMed  PubMed Central  Google Scholar 

  17. He W, Huang CZ, Li YF, Xie JP, Yang RG, Zhou PF, Wang J (2008) One-step label-free optical genosensing system for sequence-specific DNA related to the human immunodeficiency virus based on the measurements of light scattering signals of gold nanorods. Anal Chem 80:8424–8430

    Article  CAS  PubMed  Google Scholar 

  18. de Carvalho TG, Garcia VB, de Araújo AA, da Silva Gasparotto LH, Silva H, Guerra GCB, de Castro Miguel E, de CarvalhoLeitão RF, da Silva Costa DV, Cruz LJ (2018) Spherical neutral gold nanoparticles improve anti-inflammatory response, oxidative stress and fibrosis in alcohol-methamphetamine-induced liver injury in rats. Int J Pharm 548:1–14

    Article  PubMed  Google Scholar 

  19. Abd El-Maksoud EM, Lebda MA, Hashem AE, Taha NM, Kamel MA (2019) Ginkgo biloba mitigates silver nanoparticles-induced hepatotoxicity in Wistar rats via improvement of mitochondrial biogenesis and antioxidant status. Environ Sci Pollut Res 26:25844–25854

    Article  CAS  Google Scholar 

  20. Ko W-C, Wang S-J, Hsiao C-Y, Hung C-T, Hsu Y-J, Chang D-C, Hung C-F (2022) Pharmacological role of functionalized gold nanoparticles in disease applications. Molecules 27:1551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bind VK (2014) Supramolecular phthalocyanine aggregates

  22. Rodríguez-Méndez M, Gorbunova Y, De Saja J (2002) Spectroscopic properties of Langmuir− Blodgett films of lanthanide bis (phthalocyanine) s exposed to volatile organic compounds. Sens Appl Langmuir 18:9560–9565

    Google Scholar 

  23. Gregory P (2012) Industrial applications of phthalocyanines. J Porphyrins Phthalocyanines

  24. de la Torre G, Claessens CG, Torres T (2007) Phthalocyanines: old dyes, new materials. Putting color in nanotechnology. Chem Commun 20:2000–2015

  25. Claessens CG, Hahn U, Torres T (2008) Phthalocyanines: From outstanding electronic properties to emerging applications. Chem Rec 8:75–97

    Article  CAS  PubMed  Google Scholar 

  26. Alexeree SM, Sliem MA, El-Balshy RM, Amin RM, Harith M (2017) Exploiting biosynthetic gold nanoparticles for improving the aqueous solubility of metal-free phthalocyanine as biocompatible PDT agent. Mater Sci Eng, C 76:727–734

    Article  CAS  Google Scholar 

  27. Alexeree SM, Youssef D, Abdel-Harith M (2023) Using biospeckle and LIBS techniques with artificial intelligence to monitor phthalocyanine-gold nanoconjugates as a new drug delivery mediator for in vivo PDT. J Photochem Photobiol, A 440:114687

    Article  CAS  Google Scholar 

  28. Alexeree SM, Abdel-Harith M (2023) Monitoring the cytotoxic effect of novel nanoconjugates during and after in-vivo photodynamic therapy. In: Proceedings of the AIP Conference Proceedings

  29. Zheng C, Farag MR, Alagawany M, El-Kassas S, Azzam MM, Di Cerbo A, Wagih E (2023) Dietary supplementation of quercetin nanoparticles enhances the growth performance hematological and immunological responses and resistance to Aeromonas hydrophila infection in Nile tilapia (Oreochromis niloticus) exposed to silver nanoparticles toxicity. Aquac Reports 33:101780

    Article  Google Scholar 

  30. Farag MR, Abo-Al-Ela HG, Alagawany M, Azzam MM, El-Saadony MT, Rea S, Di Cerbo A, Nouh DS (2023) Effect of quercetin nanoparticles on hepatic and intestinal enzymes and stress-related genes in Nile tilapia fish exposed to silver nanoparticles. Biomedicines 11:663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. El Mahdy MM, Eldin TAS, Aly HS, Mohammed FF, Shaalan MI (2015) Evaluation of hepatotoxic and genotoxic potential of silver nanoparticles in albino rats. Exp Toxicol Pathol 67:21–29

    Article  PubMed  Google Scholar 

  32. Belfield A, Goldberg D (1971) Revised assay for serum phenyl phosphatase activity using 4-amino-antipyrine. Enzyme 12:561–573

    Article  CAS  PubMed  Google Scholar 

  33. Farag MR, Alagawany M, Mahdy EA, El-Hady E, Abou-Zeid SM, Mawed SA, Azzam MM, Crescenzo G, Abo-Elmaaty AM (2023) Benefits of Chlorella vulgaris against cadmium chloride-induced hepatic and renal toxicities via restoring the cellular redox homeostasis and modulating Nrf2 and NF-KB pathways in male rats. Biomedicines 11:2414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  35. Alexeree S, ElZorkany HE, Abdel-Salam Z, Harith MA (2021) A novel synthesis of a chlorophyll b-gold nanoconjugate used for enhancing photodynamic therapy: In vitro study. Photodiagn Photodyn Ther 35:102444

    Article  CAS  Google Scholar 

  36. Chong CP, Mills PB, McClean P, Gissen P, Bruce C, Stahlschmidt J, Knisely A, Clayton PT (2012) Bile acid-CoA ligase deficiency—a new inborn error of bile acid metabolism. J Inherit Metab Dis 35:521–530

    Article  PubMed  Google Scholar 

  37. Sun Y, Demagny H, Faure A, Pontanari F, Jalil A, Bresciani N, Yildiz E, Korbelius M, Perino A, Schoonjans K (2023) Asparagine protects pericentral hepatocytes during acute liver injury. J Clin Investig 133(7):e163508

  38. Yan J, Fang X, Feng Y, Cui X, Li F, Luo W, Ma X, Liang J, Feng J (2022) Identification of key genes associated with the progression of liver fibrosis to hepatocellular carcinoma based on iTRAQ proteomics and GEO database. Ann Hepatol 27:100681

    Article  CAS  PubMed  Google Scholar 

  39. Carow B, Rottenberg ME (2014) SOCS3, a major regulator of infection and inflammation. Front Immunol 5:58

    Article  PubMed  PubMed Central  Google Scholar 

  40. Yin Y, Liu W, Dai Y (2015) SOCS3 and its role in associated diseases. Hum Immunol 76:775–780

    Article  CAS  PubMed  Google Scholar 

  41. Feng Y, Lv L-L, Wu W-J, Li Z-L, Chen J, Ni H-F, Zhou L-T, Tang T-T, Wang F-M, Wang B (2018) Urinary exosomes and exosomal CCL2 mRNA as biomarkers of active histologic injury in IgA nephropathy. Am J Pathol 188:2542–2552

    Article  CAS  PubMed  Google Scholar 

  42. Abdel-Moneim WM, Ghafeer HH (2007) The potential protective effect of natural honey against cadmium-induced hepatotoxicity and nephrotoxicity. Mansoura J Forensic Med Clin Toxicol 15:75–98

    Article  Google Scholar 

  43. Haider A, Kang I-K (2015) Preparation of silver nanoparticles and their industrial and biomedical applications: a comprehensive review. Adv Mater Sci Eng 2015:1–16

    Article  Google Scholar 

  44. Vrček IV, Žuntar I, Petlevski R, Pavičić I, Dutour Sikirić M, Ćurlin M, Goessler W (2016) Comparison of in vitro toxicity of silver ions and silver nanoparticles on human hepatoma cells. Environ Toxicol 31:679–692

    Article  PubMed  Google Scholar 

  45. Ferdous Z, Nemmar A (2020) Health impact of silver nanoparticles: a review of the biodistribution and toxicity following various routes of exposure. Int J Mol Sci 21:2375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Rajan R, Huo P, Chandran K, Dakshinamoorthi BM, Yun S-I, Liu B (2022) A review on the toxicity of silver nanoparticles against different biosystems. Chemosphere 292:133397

    Article  CAS  PubMed  Google Scholar 

  47. Lai Y, Dong L, Zhou H, Yan B, Chen Y, Cai Y, Liu J (2020) Coexposed nanoparticulate Ag alleviates the acute toxicity induced by ionic Ag+ in vivo. Sci Total Environ 723:138050

    Article  CAS  PubMed  Google Scholar 

  48. Durán N, Rolim WR, Durán M, Fávaro WJ, Seabra AB (2019) Nanotoxicology of silver nanoparticles: toxicity in aninals and humans. Quim Nova 42:206–213

    Google Scholar 

  49. Takenaka S, Karg E, Roth C, Schulz H, Ziesenis A, Heinzmann U, Schramel P, Heyder J (2001) Pulmonary and systemic distribution of inhaled ultrafine silver particles in rats. Environ Health Perspect 109:547–551

    CAS  PubMed  PubMed Central  Google Scholar 

  50. El-Safoury D, Ibrahim AB, El-Setouhy D, Khowessah O, Motaleb M, Sakr TM (2021) Amelioration of tumor targeting and in vivo biodistribution of 99mtc-methotrexate-gold nanoparticles (99mTc-Mex-AuNPs). J Pharm Sci 110:2955–2965

    Article  CAS  PubMed  Google Scholar 

  51. Dkhil MA, Khalil MF, Bauomy AA, Diab MS, Al-Qura S (2016) Efficacy of gold nanoparticles against nephrotoxicity induced by Schistosoma mansoni infection in mice. Biomed Environ Sci 29:773–781

    CAS  PubMed  Google Scholar 

  52. Abdullah AS, El Sayed IET, El-Torgoman AMA, Alghamdi NA, Ullah S, Wageh S, Kamel MA (2021) Preparation and characterization of silymarin-conjugated gold nanoparticles with enhanced anti-fibrotic therapeutic effects against hepatic fibrosis in rats: role of MicroRNAs as molecular targets. Biomedicines 9:1767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Adebayo VA, Adewale OB, Anadozie SO, Osukoya OA, Obafemi TO, Adewumi DF, Idowu OT, Onasanya A, Ojo AA (2023) GC-MS analysis of aqueous extract of Nymphaea lotus and ameliorative potential of its biosynthesized gold nanoparticles against cadmium-induced kidney damage in rats. Heliyon

  54. Ramesh P, Gurunathan K (2012) Nanomaterials communication inside the living organism. Nano Commun Networks 3:252–256

    Article  CAS  Google Scholar 

  55. Gaiser BK, Hirn S, Kermanizadeh A, Kanase N, Fytianos K, Wenk A, Haberl N, Brunelli A, Kreyling WG, Stone V (2013) Effects of silver nanoparticles on the liver and hepatocytes in vitro. Toxicol Sci 131:537–547

    Article  CAS  PubMed  Google Scholar 

  56. Sahu SC, Zheng J, Yourick JJ, Sprando RL, Gao X (2015) Toxicogenomic responses of human liver HepG2 cells to silver nanoparticles. J Appl Toxicol 35:1160–1168

    Article  CAS  PubMed  Google Scholar 

  57. Milić M, Leitinger G, Pavičić I, Zebić Avdičević M, Dobrović S, Goessler W, Vinković Vrček I (2015) Cellular uptake and toxicity effects of silver nanoparticles in mammalian kidney cells. J Appl Toxicol 35:581–592

    Article  PubMed  Google Scholar 

  58. Salama B, Alzahrani KJ, Alghamdi KS, Al-Amer O, Hassan KE, Elhefny MA, Albarakati AJA, Alharthi F, Althagafi HA, Al Sberi H (2023) Silver nanoparticles enhance oxidative stress, inflammation, and apoptosis in liver and kidney tissues: potential protective role of thymoquinone. Biol Trace Elem Res 201:2942–2954

  59. Zhang T, Zhao Q, Ye F, Huang C-Y, Chen W-M, Huang W-Q (2018) Alda-1, an ALDH2 activator, protects against hepatic ischemia/reperfusion injury in rats via inhibition of oxidative stress. Free Radical Res 52:629–638

    Article  CAS  Google Scholar 

  60. Yap CY, Aw TC (2010) Liver function tests (LFTs). Proc Singapore Healthcare 19:80–82

    Article  Google Scholar 

  61. Huang X-J, Choi Y-K, Im H-S, Yarimaga O, Yoon E, Kim H-S (2006) Aspartate aminotransferase (AST/GOT) and alanine aminotransferase (ALT/GPT) detection techniques. Sensors 6:756–782

    Article  CAS  PubMed Central  Google Scholar 

  62. Srivastava M, Singh S, Self WT (2012) Exposure to silver nanoparticles inhibits selenoprotein synthesis and the activity of thioredoxin reductase. Environ Health Perspect 120:56–61

    Article  CAS  PubMed  Google Scholar 

  63. Ansar S, Alshehri SM, Abudawood M, Hamed SS, Ahamad T (2017) Antioxidant and hepatoprotective role of selenium against silver nanoparticles. Int J Nanomed 7789–7797

  64. Chen Y-P, Dai Z-H, Liu P-C, Chuu J-J, Lee K-Y, Lee S-L, Chen Y-J (2012) Effects of nanogold on the alleviation of carbon tetrachloride-induced hepatic injury in rats. Chin J Physiol 55:331–336

    CAS  PubMed  Google Scholar 

  65. Reshi MS, Shrivastava S, Jaswal A, Sinha N, Uthra C, Shukla S (2017) Gold nanoparticles ameliorate acetaminophen induced hepato-renal injury in rats. Exp Toxicol Pathol 69:231–240

    Article  CAS  PubMed  Google Scholar 

  66. Abdeldel.hab M, Aly S (2005) Antioxidant property of Nigella sativa (black cumin) and Syzygium aromaticum (clove) in rats during aflatoxicosis. J Appl Toxicol: An Int J 25:218–223

  67. Mosa IF, Youssef M, Shalaby T, Mosa OF (2019) The protective role of tannic acid against possible hepato-nephrotoxicity induced by silver nanoparticles on male rats. Sanamed 14:131–145

    Article  Google Scholar 

  68. Yousef HN, Ibraheim SS, Ramadan RA, Aboelwafa HR (2022) The ameliorative role of eugenol against silver nanoparticles-induced hepatotoxicity in male Wistar rats. Oxidative Med Cell Longev 2022:3820848

  69. Daisy P, Saipriya K (2012) Biochemical analysis of Cassia fistula aqueous extract and phytochemically synthesized gold nanoparticles as hypoglycemic treatment for diabetes mellitus. Int J Nanomed 7:1189–1202

  70. Perrone RD, Madias NE, Levey AS (1992) Serum creatinine as an index of renal function: new insights into old concepts. Clin Chem 38:1933–1953

    Article  CAS  PubMed  Google Scholar 

  71. Schutz Y (2011) Protein turnover, ureagenesis and gluconeogenesis. Int J Vitam Nutr Res 81:101

    Article  CAS  PubMed  Google Scholar 

  72. Gowda S, Desai PB, Kulkarni SS, Hull VV, Math AA, Vernekar SN (2010) Markers of renal function tests. N Am J Med Sci 2:170

    PubMed  PubMed Central  Google Scholar 

  73. BarathManiKanth S, Kalishwaralal K, Sriram M, Pandian SRK, Youn H-S, Eom S, Gurunathan S (2010) Anti-oxidant effect of gold nanoparticles restrains hyperglycemic conditions in diabetic mice. J Nanobiotechnol 8:1–15

    Article  Google Scholar 

  74. Fatemi M, Moshtaghian J, Ghaedi K, Naderi G (2017) Effects of silver nanoparticle on the developing liver of rat pups after maternal exposure. Iranian J Pharm Res: IJPR 16:685

    CAS  Google Scholar 

  75. Al-Doaiss AA, Jarrar Q, Alshehri M, Jarrar B (2020) In vivo study of silver nanomaterials’ toxicity with respect to size. Toxicol Ind Health 36:540–557

    Article  CAS  PubMed  Google Scholar 

  76. Megahed RM, El-sheikh AA, Yousuf AF, Mohammed SF, El-Mashad FH, Morsy MA (2023) Auto-recovery from silver nanoparticles toxic effects on the kidney and possible curative role of platelet rich plasma in adult male albino rats. Int J Med Arts 67:3525–3539

  77. Hussein RA, Ibrahim MN, Abdulrahman RB (2022) Histological and physiological assessment of silver nanoparticles (Agnps) on the kidneys of albino mice. J Pharm Negat Results 13:685–696

  78. Rapa SF, Di Iorio BR, Campiglia P, Heidland A, Marzocco S (2019) Inflammation and oxidative stress in chronic kidney disease—potential therapeutic role of minerals, vitamins and plant-derived metabolites. Int J Mol Sci 21:263

    Article  PubMed  PubMed Central  Google Scholar 

  79. Lee Y-H, Cheng F-Y, Chiu H-W, Tsai J-C, Fang C-Y, Chen C-W, Wang Y-J (2014) Cytotoxicity, oxidative stress, apoptosis and the autophagic effects of silver nanoparticles in mouse embryonic fibroblasts. Biomaterials 35:4706–4715

    Article  CAS  PubMed  Google Scholar 

  80. Nakashima Y, Sun D-H, Trindade MC, Maloney WJ, Goodman SB, Schurman DJ, Smith RL (1999) Signaling pathways for tumor necrosis factor-α and interleukin-6 expression in human macrophages exposed to titanium-alloy particulate debris in vitro. JBJS 81:603–615

    Article  CAS  Google Scholar 

  81. Morgan MJ, Liu Z-G (2011) Crosstalk of reactive oxygen species and NF-κB signaling. Cell Res 21:103–115

    Article  CAS  PubMed  Google Scholar 

  82. Ranjbar A, Firozian F, Soleimani Asl S, Ghasemi H, Taheri Azandariani M, Larki A, Kheiripour N, Hosseini A, Naserabadi A (2018) Nitrosative DNA damage after sub-chronic exposure to silver nanoparticle induces stress nephrotoxicity in rat kidney. Toxin Reviews 37:327–333

    Article  CAS  Google Scholar 

  83. Park E-J, Bae E, Yi J, Kim Y, Choi K, Lee SH, Yoon J, Lee BC, Park K (2010) Repeated-dose toxicity and inflammatory responses in mice by oral administration of silver nanoparticles. Environ Toxicol Pharmacol 30:162–168

    Article  CAS  PubMed  Google Scholar 

  84. Shehata AM, Salem FM, El-Saied EM, Abd El-Rahman SS, Mahmoud MY, Noshy PA (2022) Evaluation of the ameliorative effect of zinc nanoparticles against silver nanoparticle–induced toxicity in liver and kidney of rats. Biol Trace Elem Res 200(3):1–11

  85. Singh SP, Bhargava C, Dubey V, Mishra A, Singh Y (2017) Silver nanoparticles: biomedical applications, toxicity, and safety issues. Int J Res Pharm Pharm Sci 4:1–10

    Google Scholar 

  86. Sul O-J, Kim J-C, Kyung T-W, Kim H-J, Kim Y-Y, Kim S-H, Kim J-S, Choi H-S (2010) Gold nanoparticles inhibited the receptor activator of nuclear factor-κb ligand (RANKL)-induced osteoclast formation by acting as an antioxidant. Biosci Biotechnol Biochem 74:2209–2213

    Article  CAS  PubMed  Google Scholar 

  87. Leonavičienė L, Kirdaitė G, Bradūnaitė R, Vaitkienė D, Vasiliauskas A, Zabulytė D, Ramanavičienė A, Ramanavičius A, Ašmenavičius T, Mackiewicz Z (2012) Effect of gold nanoparticles in the treatment of established collagen arthritis in rats. Medicina 48:16

    Article  Google Scholar 

  88. Khan MA, Khan MJ (2018) Nano-gold displayed anti-inflammatory property via NF-kB pathways by suppressing COX-2 activity. Artif Cells Nanomed Biotechnol 46:1149–1158

    Article  CAS  PubMed  Google Scholar 

  89. Song B-J, Akbar M, Jo I, Hardwick JP, Abdelmegeed MA (2015) Translational implications of the alcohol-metabolizing enzymes, including cytochrome P450–2E1, in alcoholic and nonalcoholic liver disease. Adv Pharmacol 74:303–372

    Article  CAS  PubMed  Google Scholar 

  90. Ma X, Luo Q, Zhu H, Liu X, Dong Z, Zhang K, Zou Y, Wu J, Ge J, Sun A (2018) Aldehyde dehydrogenase 2 activation ameliorates CC l4-induced chronic liver fibrosis in mice by up-regulating Nrf2/HO-1 antioxidant pathway. J Cell Mol Med 22:3965–3978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Ason B, Castro-Perez J, Tep S, Stefanni A, Tadin-Strapps M, Roddy T, Hankemeier T, Hubbard B, Sachs AB, Michael Flanagan W (2011) ApoB siRNA-induced liver steatosis is resistant to clearance by the loss of fatty acid transport protein 5 (Fatp5). Lipids 46:991–1003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Richards N, Schuster SM (1998) Mechanistic issues in asparagine synthetase catalysis. Adv Enzymol Relat Areas Mol Biol 72:145–198

    CAS  PubMed  Google Scholar 

  93. Zhang B, Dong L, Tan Y, Zhang J, Pan Y, Yang C, Li M, Ding Z, Liu L, Jiang T (2013) Asparagine synthetase is an independent predictor of surgical survival and a potential therapeutic target in hepatocellular carcinoma. Br J Cancer 109:14–23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Liang Y, Xu WD, Peng H, Pan HF, Ye DQ (2014) SOCS signaling in autoimmune diseases: molecular mechanisms and therapeutic implications. Eur J Immunol 44:1265–1275

    Article  CAS  PubMed  Google Scholar 

  95. Yang C, Zhang Y, Wang J, Li L, Wang L, Hu M, Xu M, Long Y, Rong R, Zhu T (2015) A novel cyclic helix B peptide inhibits dendritic cell maturation during amelioration of acute kidney graft rejection through Jak-2/STAT3/SOCS1. Cell Death Dis 6:e1993–e1993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Feng Y, Liang Y, Ren J, Dai C (2018) Canonical Wnt signaling promotes macrophage proliferation during kidney fibrosis. Kidney Dis 4:95–103

    Article  Google Scholar 

  97. Wu Y, Peng W, Wei R, Zhou Y, Fang M, Liu S, Deng Y, Yin Q, Ouyang X, Hu L (2019) Rat mRNA expression profiles associated with inhibition of ischemic acute kidney injury by losartan. Biosci Reports 39:BSR20181774

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Researchers Supporting Project (RSPD2024R731), King Saud University (Riyadh, Saudi Arabia).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to all works conducted in the present study. All authors have drafted, reviewed, revised, and approved the final manuscript.

Corresponding authors

Correspondence to Mahmoud Alagawany or Suzan Attia Mawed.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abd Elhameed, H.A.H., Attia, M.S., Mohamed, A.A.A. et al. The Role of Phthalocyanine-Gold Nanoconjugates (Pc-Au NCs) in Ameliorating the Hepatic and Renal Toxicity-Induced by Silver Nanoparticles (Ag NPs) in Male Rats. Biol Trace Elem Res (2024). https://doi.org/10.1007/s12011-024-04209-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12011-024-04209-1

Keywords

Navigation