Skip to main content
Log in

Targeting iron metabolism using gallium nanoparticles to suppress ferroptosis and effectively mitigate acute kidney injury

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Ferroptosis plays a critical pathophysiological role in several types of acute kidney injury (AKI). The development of nanomaterials targeting iron metabolism and ferroptosis is a promising approach for AKI treatment. Herein, we synthesized gallic acid-gallium polyvinyl pyrrolidone nanoparticles (GGP NPs) as a potential iron-scavenging agent because of their nearly ionic radius and chemical similarity with iron. The results indicated that GGP NPs accumulated in tubular epithelial cells and showed good biocompatibility. GGP NPs significantly inhibited cisplatin (CP)-induced ferroptosis in HK-2 cells by reducing the accumulation of intracellular free iron and mitochondrial dysfunction, and suppressing the perturbations of ferroptosis processes, including lipid peroxidation, nicotinamide adenine dinucleotide phosphate (NADPH) and glutathione (GSH) levels, glutathione peroxidase 4 (GPX4) activity, and ferritinophagy. An in vivo study demonstrated that treatment with GGP NPs significantly ameliorated the renal tubular injury and mitochondrial damage induced by CP treatment or ischemia-reperfusion injury. Our study suggests that GGP NPs may be an effective and promising candidate for AKI treatment and enable potential clinical translation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ronco, C.; Bellomo, R.; Kellum, J. A. Acute kidney injury. Lancet 2019, 394, 1949–1964.

    CAS  Google Scholar 

  2. He, L. Y.; Wei, Q. Q.; Liu, J.; Yi, M. X.; Liu, Y.; Liu, H.; Sun, L.; Peng, Y. M.; Liu, F. Y.; Venkatachalam, M. A. et al. AKI on CKD: Heightened injury, suppressed repair, and the underlying mechanisms. Kidney Int. 2017, 92, 1071–1083.

    Google Scholar 

  3. Scholz, H.; Boivin, F. J.; Schmidt-Ott, K. M.; Bachmann, S.; Eckardt, K. U.; Scholl, U. I.; Persson, P. B. Kidney physiology and susceptibility to acute kidney injury: Implications for renoprotection. Nat. Rev. Nephrol. 2021, 17, 335–349.

    CAS  Google Scholar 

  4. Martin-Sanchez, D.; Ruiz-Andres, O.; Poveda, J.; Carrasco, S.; Cannata-Ortiz, P.; Sanchez-Niño, M. D.; Ortega, M. R.; Egido, J.; Linkermann, A.; Ortiz, A. et al. Ferroptosis, but not necroptosis, is important in nephrotoxic folic acid-induced AKI. J. Am. Soc. Nephrol. 2017, 28, 218–229.

    CAS  Google Scholar 

  5. Deng, F.; Sharma, I.; Dai, Y. B.; Yang, M.; Kanwar, Y. S. Myoinositol oxygenase expression profile modulates pathogenic ferroptosis in the renal proximal tubule. J. Clin. Invest. 2019, 129, 5033–5049.

    CAS  Google Scholar 

  6. Linkermann, A. Nonapoptotic cell death in acute kidney injury and transplantation. Kidney Int. 2016, 89, 46–57.

    Google Scholar 

  7. Guo, L. X.; Zhang, T. P.; Wang, F.; Chen, X.; Xu, H. M.; Zhou, C.; Chen, M.; Yu, F. J.; Wang, S.; Yang, D. G. et al. Targeted inhibition of Reverb-a/β limits ferroptosis to ameliorate folic acid-induced acute kidney injury. Br. J. Pharmacol. 2021, 178, 328–345.

    CAS  Google Scholar 

  8. Hu, Z. X.; Zhang, H.; Yang, S. K.; Wu, X. Q.; He, D.; Cao, K.; Zhang, W. Emerging role of ferroptosis in acute kidney injury. Oxid. Med. Cell. Longev. 2019, 2019, 8010614.

    Google Scholar 

  9. Dixon, S. J.; Lemberg, K. M.; Lamprecht, M. R.; Skouta, R.; Zaitsev, E. M.; Gleason, C. E.; Patel, D. N.; Bauer, A. J.; Cantley, A. M.; Yang, W. S. et al. Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell 2012, 149, 1060–1072.

    CAS  Google Scholar 

  10. Doll, S.; Conrad, M. Iron and ferroptosis: A still ill-defined liaison. IUBMB Life 2017, 69, 423–434.

    CAS  Google Scholar 

  11. Scindia, Y.; Dey, P.; Thirunagari, A.; Huang, L. P.; Rosin, D. L.; Floris, M.; Okusa, M. D.; Swaminathan, S. Hepcidin mitigates renal ischemia-reperfusion injury by modulating systemic iron homeostasis. J. Am. Soc. Nephrol. 2015, 26, 2800–2814.

    CAS  Google Scholar 

  12. Borawski, B.; Malyszko, J. Iron, ferroptosis, and new insights for prevention in acute kidney injury. Adv. Med. Sci. 2020, 65, 361–370.

    Google Scholar 

  13. Sharma, S.; Leaf, D. E. Iron chelation as a potential therapeutic strategy for AKI prevention. J. Am. Soc. Nephrol. 2019, 30, 2060–2071.

    CAS  Google Scholar 

  14. Chitambar, C. R. Gallium and its competing roles with iron in biological systems. Biochim. Biophys. Acta 2016, 1863, 2044–2053.

    CAS  Google Scholar 

  15. Newman, R. A.; Brody, A. R.; Krakoff, I. H. Gallium nitrate (NSC-15200) induced toxicity in the rat: A pharmacologic, histopathologic and microanalytical investigation. Cancer 1979, 44, 1728–1740.

    CAS  Google Scholar 

  16. Goss, C. H.; Kaneko, Y.; Khuu, L.; Anderson, G. D.; Ravishankar, S.; Aitken, M. L.; Lechtzin, N.; Zhou, G. L.; Czyz, D. M.; McLean, K. et al. Gallium disrupts bacterial iron metabolism and has therapeutic effects in mice and humans with lung infections. Sci. Transl. Med. 2018, 10, eaat7520.

    Google Scholar 

  17. Chitambar, C. R. Gallium-containing anticancer compounds. Future Med. Chem. 2012, 4, 1257–1272.

    CAS  Google Scholar 

  18. Yin, H. Y.; Gao, J. J.; Chen, X. M.; Ma, B.; Yang, Z. S.; Tang, J.; Wang, B. W.; Chen, T. F.; Wang, C.; Gao, S. et al. A gallium(III) complex that engages protein disulfide isomerase A3 (PDIA3) as an anticancer target. Angew. Chem., Int. Ed. 2020, 59, 20147–20153.

    CAS  Google Scholar 

  19. Yang, C. Y.; Yu, Y. R.; Wang, X. C.; Wang, Q.; Shang, L. R. Cellular fluidic-based vascular networks for tissue engineering. Engineered Regeneration 2021, 2, 171–174.

    Google Scholar 

  20. Yang, K. K.; Yang, Z. Q.; Yu, G. C.; Nie, Z. H.; Wang, R. B.; Chen, X. Y. Polyprodrug nanomedicines: An emerging paradigm for cancer therapy. Adv. Mater. 2022, 34, 2107434.

    CAS  Google Scholar 

  21. Chen, G. P.; Zhang, H.; Wang, H.; Wang, F. Y. Immune tolerance induced by immune-homeostatic particles. Engineered Regeneration 2021, 2, 133–136.

    Google Scholar 

  22. Ma, Y. H.; Cai, F. H.; Li, Y. Y.; Chen, J. H.; Han, F.; Lin, W. Q. A review of the application of nanoparticles in the diagnosis and treatment of chronic kidney disease. Bioact. Mater. 2020, 5, 732–743.

    Google Scholar 

  23. Wang, L. F.; Zhang, Y. J.; Li, Y. Y.; Chen, J. H.; Lin, W. Q. Recent advances in engineered nanomaterials for acute kidney injury theranostics. Nano Res. 2021, 14, 920–933.

    CAS  Google Scholar 

  24. Wang, J.; Poon, C.; Chin, D.; Milkowski, S.; Lu, V.; Hallows, K. R.; Chung, E. J. Design and in vivo characterization of kidney-targeting multimodal micelles for renal drug delivery. Nano Res. 2018, 11, 5584–5595.

    CAS  Google Scholar 

  25. Bao, Y. W.; Bai, M. Q.; Zhu, H. H.; Yuan, Y.; Wang, Y.; Zhang, Y. J.; Wang, J. N.; Xie, X. S.; Yao, X.; Mao, J. H. et al. DNA demethylase Tet2 suppresses cisplatin-induced acute kidney injury. Cell Death Discov. 2021, 7, 167.

    CAS  Google Scholar 

  26. Wang, F. Q.; Jiang, X. F.; Xiang, H. J.; Wang, N.; Zhang, Y. J.; Yao, X.; Wang, P.; Pan, H.; Yu, L. F.; Cheng, Y. F. et al. An inherently kidney-targeting near-infrared fluorophore based probe for early detection of acute kidney injury. Biosens. Bioelectron. 2021, 172, 112756.

    CAS  Google Scholar 

  27. Bao, Y. W.; Yuan, Y.; Chen, J. H.; Lin, W. Q. Kidney disease models: Tools to identify mechanisms and potential therapeutic targets. Zool. Res. 2018, 39, 72–86.

    CAS  Google Scholar 

  28. Wang, J. N.; Nie, W. Y.; Xie, X. S.; Bai, M. Q.; Ma, Y. H.; Jin, L. N.; Xiao, L.; Shi, P.; Yang, Y.; Jose, P. A. et al. MicroRNA-874-3p/ADAM (A Disintegrin and Metalloprotease) 19 mediates macrophage activation and renal fibrosis after acute kidney injury. Hypertension 2021, 77, 1613–1626.

    CAS  Google Scholar 

  29. Prus, E.; Fibach, E. Flow cytometry measurement of the labile iron pool in human hematopoietic cells. Cytometry A 2008, 73, 22–27.

    Google Scholar 

  30. Yang, J. C.; Ding, L.; Yu, L. D.; Wang, Y. M.; Ge, M.; Jiang, Q. Z.; Chen, Y. Nanomedicine enables autophagy-enhanced cancer-cell ferroptosis. Sci. Bull. 2021, 66, 464–477.

    CAS  Google Scholar 

  31. Hao, Y. N.; Gao, Y. R.; Li, Y.; Fei, T.; Shu, Y.; Wan, J. H. Ultrasmall copper—gallic acid nanodots for chemodynamic therapy. Adv. Mater. Interfaces 2021, 8, 2101173.

    CAS  Google Scholar 

  32. Ahmadvand, H.; Yalameha, B.; Adibhesami, G.; Nasri, M.; Naderi, N.; Babaeenezhad, E.; Nouryazdan, N. The protective role of gallic acid pretreatment on renal ischemia-reperfusion injury in rats. Rep. Biochem. Mol. Biol. 2019, 8, 42–48.

    CAS  Google Scholar 

  33. Eslamifar, Z.; Moridnia, A.; Sabbagh, S.; Ghaffaripour, R.; Jafaripour, L.; Behzadifard, M. Ameliorative effects of Gallic acid on cisplatin-induced nephrotoxicity in rat variations of biochemistry, histopathology, and gene expression. BioMed Res. Int. 2021, 2021, 2195238.

    Google Scholar 

  34. Yang, W. S.; SriRamaratnam, R.; Welsch, M. E.; Shimada, K.; Skouta, R.; Viswanathan, V. S.; Cheah, J. H.; Clemons, P. A.; Shamji, A. F.; Clish, C. B. et al. Regulation of ferroptotic cancer cell death by GPX4. Cell 2014, 156, 317–331.

    CAS  Google Scholar 

  35. Ursini, F.; Maiorino, M. Lipid peroxidation and ferroptosis: The role of GSH and GPx4. Free Radic. Biol. Med. 2020, 152, 175–185.

    CAS  Google Scholar 

  36. Friedmann Angeli, J. P.; Schneider, M.; Proneth, B.; Tyurina, Y. Y.; Tyurin, V. A.; Hammond, V. J.; Herbach, N.; Aichler, M.; Walch, A.; Eggenhofer, E. et al. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat. Cell Biol. 2014, 16, 1180–1191.

    CAS  Google Scholar 

  37. Bellelli, R.; Federico, G.; Matte’, A.; Colecchia, D.; Iolascon, A.; Chiariello, M.; Santoro, M.; De Franceschi, L.; Carlomagno, F. NCOA4 deficiency impairs systemic iron homeostasis. Cell Rep. 2016, 14, 411–421.

    CAS  Google Scholar 

  38. Kelson, A. B.; Carnevali, M.; Truong-Le, V. Gallium-based antiinfectives: Targeting microbial iron-uptake mechanisms. Curr. Opin. Pharmacol. 2013, 13, 707–716.

    CAS  Google Scholar 

  39. Zhao, Y.; Pu, M. J.; Wang, Y. N.; Yu, L. M.; Song, X. Y.; He, Z. Y. Application of nanotechnology in acute kidney injury: From diagnosis to therapeutic implications. J. Control. Release 2021, 336, 233–251.

    CAS  Google Scholar 

  40. Zarjou, A.; Bolisetty, S.; Joseph, R.; Traylor, A.; Apostolov, E. O.; Arosio, P.; Balla, J.; Verlander, J.; Darshan, D.; Kuhn, L. C. et al. Proximal tubule H-ferritin mediates iron trafficking in acute kidney injury. J. Clin. Invest. 2013, 123, 4423–4434.

    CAS  Google Scholar 

  41. Dowdle, W. E.; Nyfeler, B.; Nagel, J.; Elling, R. A.; Liu, S. M.; Triantafellow, E.; Menon, S.; Wang, Z. C.; Honda, A.; Pardee, G. et al. Selective VPS34 inhibitor blocks autophagy and uncovers a role for NCOA4 in ferritin degradation and iron homeostasis in vivo. Nat. Cell Biol. 2014, 16, 1069–1079.

    CAS  Google Scholar 

  42. Kuang, S.; Liao, X. X.; Zhang, X. R.; Rees, T. W.; Guan, R. L.; Xiong, K.; Chen, Y.; Ji, L. N.; Chao, H. FerriIridium: A lysosometargeting iron(III)-activated iridium(III) prodrug for chemotherapy in gastric cancer cells. Angew. Chem., Int. Ed. 2020, 59, 3315–3321.

    CAS  Google Scholar 

  43. Pan, J.; Harriss, B. I.; Chan, C. F.; Jiang, L. J.; Tsoi, T. H.; Long, N. J.; Wong, W. T.; Wong, W. K.; Wong, K. L. Gallium and functionalized-porphyrins combine to form potential lysosomespecific multimodal bioprobes. Inorg. Chem. 2016, 55, 6839–6841.

    CAS  Google Scholar 

  44. Gaschler, M. M.; Stockwell, B. R. Lipid peroxidation in cell death. Biochem. Biophys. Res. Commun. 2017, 482, 419–425.

    CAS  Google Scholar 

  45. Conrad, M.; Pratt, D. A. The chemical basis of ferroptosis. Nat. Chem. Biol. 2019, 15, 1137–1147.

    CAS  Google Scholar 

  46. Ingold, I.; Berndt, C.; Schmitt, S.; Doll, S.; Poschmann, G.; Buday, K.; Roveri, A.; Peng, X. X.; Freitas, F. P.; Seibt, T. et al. selenium utilization by GPX4 is required to prevent hydroperoxide-induced ferroptosis. Cell 2018, 172, 409–422.E21.

    CAS  Google Scholar 

  47. Maiorino, M.; Conrad, M.; Ursini, F. GPx4, lipid peroxidation, and cell death: Discoveries, rediscoveries, and open issues. Antioxid. Redox Signal. 2018, 29, 61–74.

    CAS  Google Scholar 

  48. Imai, H.; Matsuoka, M.; Kumagai, T.; Sakamoto, T.; Koumura, T. Lipid peroxidation-dependent cell death regulated by GPx4 and ferroptosis. Curr. Top. Microbiol. Immunol. 2017, 403, 143–170.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Key R&D Program of China (No. 2018YFC2000400), Zhejiang Provincial Natural Science Foundation of China (No. LZ22H050001), the National Natural Science Foundation of China (Nos. 81970573, 81670651, and 82000637), Zhejiang provincial program for the Cultivation of High-level Innovative Health talents, and Medical Health Science and Technology Project of Zhejiang Provincial Health Commission (No. 2020KY538).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fei Han, Yangyang Li or Weiqiang Lin.

Electronic Supplementary Material

12274_2022_4257_MOESM1_ESM.pdf

Targeting iron metabolism using gallium nanoparticles to suppress ferroptosis and effectively mitigate acute kidney injury

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, X., Zhang, Y., Su, X. et al. Targeting iron metabolism using gallium nanoparticles to suppress ferroptosis and effectively mitigate acute kidney injury. Nano Res. 15, 6315–6327 (2022). https://doi.org/10.1007/s12274-022-4257-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4257-y

Keywords

Navigation