Skip to main content
Log in

Effect of Selenium and Zinc Supplementation on Reproductive Organs Following Postnatal Protein Malnutrition

  • Research
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Protein diets are required for the normal development of the reproductive system and their inadequacy or deficiency might have hazardous functional complications during maturational and developmental stages. The study was carried out to evaluate the effect of selenium (Se) and zinc (Zn) supplementation on the male and female reproductive organs of rats with postnatal protein malnutrition. Male and female weanling rats were randomly assigned to six groups respectively. The adequate protein diet rats were fed with 16% casein diet while the protein malnourished diet (PMD) rats were fed with 5% casein diet. After the 8th week of feeding, Se (sodium selenite; Na2SeO3) and Zn (zinc sulfate; ZnSO4·7H2O) were supplemented for 3 weeks. The growth curve of body weights, lipid profile, testosterone and progesterone level, Na+-K+-ATPase activity, oxidative stress, and antioxidant status were evaluated. The results showed that PMD reduced the body weights of male and female rats. It also reduced the activities of catalase and glutathione peroxidase in the testes, but reductions in superoxide dismutase and glutathione-S-transferase activities, glutathione, vitamins C and E, testosterone, and progesterone levels were observed in both the testes and ovaries. Furthermore, PMD increased the nitric oxide level in both organs and altered the plasma lipid profiles in both sexes. Se and Zn supplementation, however, restored almost all the alterations observed in all the parameters analyzed. In conclusion, Se and Zn supplementation protects the male and female reproductive organs of rats against postnatal protein malnutrition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Adebayo OL, Khera A, Sandhir R, Adenuga GA (2016) Reduced expressions of calmodulin genes and protein and reduced ability of calmodulin to activate plasma membrane Ca2+-ATPase in the brain of protein undernourished rats: Modulatory roles of selenium and zinc supplementation. Cell Biochem Funct 34:95–103. https://doi.org/10.1002/cbf.3168

    Article  CAS  PubMed  Google Scholar 

  2. Genovese P, Núñez M, Pombo C, Bielli A (2010) Undernutrition during foetal and post-natal life affects testicular structure and reduces the number of sertoli cells in the adult rat. Reprod Domest Anim 45:233–236. https://doi.org/10.1111/j.1439-0531.2008.01244.x

    Article  CAS  PubMed  Google Scholar 

  3. Elmaz Ö, Cirit Ü, Keser O et al (2007) Effect of two dietary protein levels on testosterone, testicular parameters and semen quality in ram lambs during pubertal development. Med Weter 63:1177–1180

    Google Scholar 

  4. Hanai M, Esashi T (2007) The interactive effect of dietary protein and vitamin levels on the depression of gonadal development in growing male rats kept under disturbed daily rhythm. J Nutr Sci Vitaminol 53:138–144

    Article  CAS  PubMed  Google Scholar 

  5. Karaca F, Dönmez HH, Karsli MA (2003) Effects of protein deficiency on testosterone levels, semen quality and testicular histology in the developing male rat. Scand J Lab Anim Sci 30:7–9

    CAS  Google Scholar 

  6. de Morais Oliveira DA, Lupi LA, Silveira HS, de Almeida Chuffa LG (2021) Protein restriction during puberty alters nutritional parameters and affects ovarian and uterine histomorphometry in adulthood in rats. Int J Exp Pathol 102:93–104. https://doi.org/10.1111/iep.12388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Adebayo OL, Adenuga GA, Sandhir R (2014) Postnatal protein malnutrition induces neurochemical alterations leading to behavioral deficits in rats: prevention by selenium or zinc supplementation. Nutr Neurosci 17:268–278. https://doi.org/10.1179/1476830513Y.0000000090

    Article  CAS  PubMed  Google Scholar 

  8. Ziolkowski N, Grover AK (2010) Functional linkage as a direction for studies in oxidative stress: α-adrenergic receptorsThis review is one of a selection of papers published in a Special Issue on Oxidative Stress in Health and Disease. Can J Physiol Pharmacol 88:220–232. https://doi.org/10.1139/Y10-013

    Article  CAS  PubMed  Google Scholar 

  9. Agarwal A, Gupta S, Sikka S (2006) The role of free radicals and antioxidants in reproduction. Curr Opin Obstet Gynecol 18:325–332. https://doi.org/10.1097/01.gco.0000193003.58158.4e

    Article  PubMed  Google Scholar 

  10. Adebayo O, Adenuga G (2012) Oxidative damage on the testes of adult rats by sodium metabisulfite (MBS). Int J Biol Chem Sci 6. https://doi.org/10.4314/ijbcs.v6i2.17

  11. Gautam B, Deb K, Banerjee M et al (2008) Serum zinc and copper level in children with protein energy malnutrition. Mymensingh Med J 17:S12–S15

    CAS  PubMed  Google Scholar 

  12. González-Reimers E, López-Lirola A, Olivera RM et al (2003) Effects of protein deficiency on liver trace elements and antioxidant activity in carbon tetrachloride-induced liver cirrhosis. Biol Trace Elem Res 93:127–140. https://doi.org/10.1385/BTER:93:1-3:127

    Article  PubMed  Google Scholar 

  13. Jackson MI, Combs GF (2008) Selenium and anticarcinogenesis: underlying mechanisms. Curr Opin Clin Nutr Metab Care 11:718–726. https://doi.org/10.1097/MCO.0b013e3283139674

    Article  CAS  PubMed  Google Scholar 

  14. Hoffmann PR, Hoge SC, Li P-A et al (2007) The selenoproteome exhibits widely varying, tissue-specific dependence on selenoprotein P for selenium supply. Nucleic Acids Res 35:3963–3973. https://doi.org/10.1093/nar/gkm355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhou J-C, Zheng S, Mo J et al (2017) Dietary Selenium deficiency or excess reduces sperm quality and testicular mRNA abundance of nuclear glutathione peroxidase 4 in rats. J Nutr 147:1947–1953. https://doi.org/10.3945/jn.117.252544

    Article  CAS  PubMed  Google Scholar 

  16. Atif F, Yousuf S, Agrawal SK (2008) Restraint stress-induced oxidative damage and its amelioration with selenium. Eur J Pharmacol 600:59–63. https://doi.org/10.1016/j.ejphar.2008.09.029

    Article  CAS  PubMed  Google Scholar 

  17. Abedelahi A, Salehnia M, Allameh AA, Davoodi D (2010) Sodium selenite improves the in vitro follicular development by reducing the reactive oxygen species level and increasing the total antioxidant capacity and glutathione peroxide activity. Hum Reprod 25:977–985. https://doi.org/10.1093/humrep/deq002

    Article  CAS  PubMed  Google Scholar 

  18. Bozkurt S, Arikan DC, Kurutas EB et al (2012) Selenium has a protective effect on ischemia/reperfusion injury in a rat ovary model: biochemical and histopathologic evaluation. J Pediatr Surg 47:1735–1741. https://doi.org/10.1016/j.jpedsurg.2012.03.053

    Article  PubMed  Google Scholar 

  19. Li M, Zhang Y, Li S (2020) Effects of selenium deficiency on testis development and autophagy in chicks. Ital J Anim Sci 19:753–761. https://doi.org/10.1080/1828051X.2020.1786739

    Article  CAS  Google Scholar 

  20. Shareef MA, Mohammed TR, Alrawi HM (2021) Impact of Saccharomyces cerevisiae enriched with selenium or zinc on reproductive performance, estrogen and progesterone hormone in local Iraqi female goats. IOP Conf Ser: Earth Environ Sci 761:012095. https://doi.org/10.1088/1755-1315/761/1/012095

    Article  Google Scholar 

  21. Mojapelo MM, Lehloenya KC (2019) Effect of selenium supplementation on attainment of puberty in Saanen male goat kids. Theriogenology 138:9–15. https://doi.org/10.1016/j.theriogenology.2019.06.044

    Article  CAS  PubMed  Google Scholar 

  22. Bhowmik D, Bhattacharjee C, Kumar S (2010) A potential medicinal importance of zinc in human health and chronic disease. Int J Res Pharm Biomed Sci 1:5–11

    Google Scholar 

  23. Prasad AS (2003) Zinc deficiency: has been known of for 40 years but ignored by global health organisations. BMJ 326:409–410. https://doi.org/10.1136/bmj.326.7386.409

    Article  PubMed  PubMed Central  Google Scholar 

  24. Murarka S, Mishra V, Joshi P, Kumar S (2015) Role of zinc in reproductive biology—an overview. Aust J Reprod Med & Infert 2:1009

    Google Scholar 

  25. Wang H, Hu Y-F, Hao J-H et al (2015) Maternal zinc deficiency during pregnancy elevates the risks of fetal growth restriction: a population-based birth cohort study. Sci Rep 5:11262. https://doi.org/10.1038/srep11262

    Article  PubMed  PubMed Central  Google Scholar 

  26. Cummings JE, Kovacic JP (2009) The ubiquitous role of zinc in health and disease. J Vet Emerg Crit Care 19:215–240. https://doi.org/10.1111/j.1476-4431.2009.00418.x

    Article  Google Scholar 

  27. Zhang R, Zhao G, Shi H et al (2020) Zinc regulates primary ovarian tumor growth and metastasis through the epithelial to mesenchymal transition. Free Radic Biol Med 160:775–783. https://doi.org/10.1016/j.freeradbiomed.2020.09.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Das K, Buchholz N (2019) Benign prostate hyperplasia and nutrition. Clin Nutr ESPEN 33:5–11. https://doi.org/10.1016/j.clnesp.2019.07.015

    Article  CAS  PubMed  Google Scholar 

  29. Mazaheri Nia L, Iravani M, Abedi P, Cheraghian B (2021) Effect of zinc on testosterone levels and sexual function of postmenopausal women: a randomized controlled trial. J Sex Marital Ther 47:804–813. https://doi.org/10.1080/0092623X.2021.1957732

    Article  PubMed  Google Scholar 

  30. Adebayo OL, Adenuga GA, Sandhir R (2016) Selenium and zinc protect brain mitochondrial antioxidants and electron transport chain enzymes following postnatal protein malnutrition. Life Sci 152. https://doi.org/10.1016/j.lfs.2016.03.008

  31. Adebayo OL, Sandhir R, Adenuga GA (2015) Protective roles of selenium and zinc against postnatal protein-undernutrition-induced alterations in Ca2+-homeostasis leading to cognitive deficits in Wistar rats. Int J Dev Neurosci 43. https://doi.org/10.1016/j.ijdevneu.2015.03.007

  32. Varshney R, Kale RK (1990) Effects of calmodulin antagonists on radiation-induced lipid peroxidation in microsomes. Int J Radiat Biol 58:733–743. https://doi.org/10.1080/09553009014552121

    Article  CAS  PubMed  Google Scholar 

  33. Tracey WR, Tse J, Carter G (1995) Lipopolysaccharide-induced changes in plasma nitrite and nitrate concentrations in rats and mice: pharmacological evaluation of nitric oxide synthase inhibitors. J Pharmacol Exp Ther 272:1011–1015

    CAS  PubMed  Google Scholar 

  34. Misra HP, Fridovich I (1972) The univalent reduction of oxygen by reduced flavins and quinones. J Biol Chem 247:188–192

    Article  CAS  PubMed  Google Scholar 

  35. Sinha AK (1972) Colorimetric assay of catalase. Anal Biochem 47:389–394. https://doi.org/10.1016/0003-2697(72)90132-7

    Article  CAS  PubMed  Google Scholar 

  36. Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–77. https://doi.org/10.1016/0003-9861(59)90090-6

    Article  CAS  PubMed  Google Scholar 

  37. Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem 249:7130–7139

    Article  CAS  PubMed  Google Scholar 

  38. Sedlak J, Lindsay RH (1968) Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Anal Biochem 25:192–205. https://doi.org/10.1016/0003-2697(68)90092-4

    Article  CAS  PubMed  Google Scholar 

  39. Roe JH, Kuether CA (1943) The determination of ascorbic acid in whole blood and urine through the 2,4-dinitrophenylhydrazine derivative of dehydroascorbic acid. J Biol Chem 147:399–407. https://doi.org/10.1016/S0021-9258(18)72395-8

    Article  CAS  Google Scholar 

  40. Baker H, Frank O, De Angells B, Feingold S (1980) Plasma tocopherol in man at various times after ingesting free or acetylaned tocopherol. Nutr Rep Int 21:531–536

    CAS  Google Scholar 

  41. Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226:497–509

    Article  CAS  PubMed  Google Scholar 

  42. Lardy HA, Wellman H (1953) The catalytic effect of 2,4-dinitrophenol on adenosinetriphosphate hydrolysis by cell particles and soluble enzymes. J Biol Chem 201:357–370

    Article  CAS  PubMed  Google Scholar 

  43. Stewart DJ (1974) Sensitive automated methods for phosphate and (Na+ + K+)-ATPase. Anal Biochem 62:349–364. https://doi.org/10.1016/0003-2697(74)90167-5

    Article  CAS  PubMed  Google Scholar 

  44. Njike VY, Ayettey R, Petraro P et al (2015) Walnut ingestion in adults at risk for diabetes: effects on body composition, diet quality, and cardiac risk measures. BMJ Open Diabetes Res Care 3:e000115. https://doi.org/10.1136/bmjdrc-2015-000115

    Article  PubMed  PubMed Central  Google Scholar 

  45. Hoppe CC, Evans RG, Bertram JF, Moritz KM (2007) Effects of dietary protein restriction on nephron number in the mouse. Am J Physiol Regul Integr Comp Physiol 292:R1768–R1774. https://doi.org/10.1152/ajpregu.00442.2006

    Article  CAS  PubMed  Google Scholar 

  46. Bharadwaj S, Ginoya S, Tandon P et al (2016) Malnutrition: laboratory markers vs nutritional assessment. Gastroenterology Report gow013. https://doi.org/10.1093/gastro/gow013

  47. Reyes-Castro LA, Rodriguez JS, Rodríguez-González GL et al (2011) Pre- and/or postnatal protein restriction in rats impairs learning and motivation in male offspring. Int J Dev Neurosci 29:177–182. https://doi.org/10.1016/j.ijdevneu.2010.11.002

    Article  CAS  PubMed  Google Scholar 

  48. Ajuogu PK, Al-Aqbi MA, Hart RA et al (2020) The effect of dietary protein intake on factors associated with male infertility: a systematic literature review and meta-analysis of animal clinical trials in rats. Nutr Health 26:53–64. https://doi.org/10.1177/0260106019900731

    Article  PubMed  Google Scholar 

  49. Hasani M, Saidpour A, Irandoost P et al (2021) Beneficial effects of Se/Zn co-supplementation on body weight and adipose tissue inflammation in high-fat diet-induced obese rats. Food Sci Nutr 9:3414–3425. https://doi.org/10.1002/fsn3.2203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Nido SA, Shituleni SA, Mengistu BM et al (2016) Effects of selenium-enriched probiotics on lipid metabolism, antioxidative status, histopathological lesions, and related gene expression in mice fed a high-fat diet. Biol Trace Elem Res 171:399–409. https://doi.org/10.1007/s12011-015-0552-8

    Article  CAS  PubMed  Google Scholar 

  51. Zeng M-S, Li X, Liu Y et al (2012) A high-selenium diet induces insulin resistance in gestating rats and their offspring. Free Radic Biol Med 52:1335–1342. https://doi.org/10.1016/j.freeradbiomed.2012.01.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ávila J, González-Fernández R, Rotoli D et al (2016) Oxidative stress in granulosa-lutein cells from in vitro fertilization patients. Reprod Sci 23:1656–1661. https://doi.org/10.1177/1933719116674077

    Article  CAS  PubMed  Google Scholar 

  53. Gavia-García G, González-Martínez H, Miliar-García Á et al (2015) Oxidative damage and antioxidant defense in thymus of malnourished lactating rats. Nutrition 31:1408–1415. https://doi.org/10.1016/j.nut.2015.05.014

    Article  CAS  PubMed  Google Scholar 

  54. Gavia-García G, de los Ángeles Rosas-Trejo M, García-Mendoza E et al (2018) t-BHQ protects against oxidative damage and maintains the antioxidant response in malnourished rats. Dose-Response 16:155932581879630. https://doi.org/10.1177/1559325818796304

    Article  CAS  Google Scholar 

  55. Gopalakrishnan B, Nash KM, Velayutham M, Villamena FA (2012) Detection of nitric oxide and superoxide radical anion by electron paramagnetic resonance spectroscopy from cells using spin traps. J Vis Exp. https://doi.org/10.3791/2810

  56. Theys N, Clippe A, Bouckenooghe T et al (2009) Early low protein diet aggravates unbalance between antioxidant enzymes leading to islet dysfunction. PloS One 4:e6110. https://doi.org/10.1371/journal.pone.0006110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ahmad A, Khan MM, Ishrat T et al (2011) Synergistic effect of selenium and melatonin on neuroprotection in cerebral ischemia in rats. Biol Trace Elem Res 139:81–96. https://doi.org/10.1007/s12011-010-8643-z

    Article  CAS  PubMed  Google Scholar 

  58. Liu S, Xu F, Fu J, Li S (2015) Protective roles of selenium on nitric oxide and the gene expression of inflammatory cytokines induced by cadmium in chicken splenic lymphocytes. Biol Trace Elem Res 168:252–260. https://doi.org/10.1007/s12011-015-0354-z

    Article  CAS  PubMed  Google Scholar 

  59. Hseu Y-C, Wu F-Y, Wu J-J et al (2005) Anti-inflammatory potential of Antrodia Camphorata through inhibition of iNOS, COX-2 and cytokines via the NF-κB pathway. Int Immunopharmacol 5:1914–1925. https://doi.org/10.1016/j.intimp.2005.06.013

    Article  CAS  PubMed  Google Scholar 

  60. Cortese-Krott MM, Kulakov L, Opländer C et al (2014) Zinc regulates iNOS-derived nitric oxide formation in endothelial cells. Redox Biol 2:945–954. https://doi.org/10.1016/j.redox.2014.06.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kavak D, Satici Ö, Kavak V (2021) Comparison of the effects of maternal and postnatal application of protein malnutrition, testes morphology and spermatological parameters in adult rats. Acta Scientific Women’s Health 3:24–35

    Google Scholar 

  62. Wang S, He G, Chen M et al (2017) The role of antioxidant enzymes in the ovaries. Oxid Med Cell Longev 2017:1–14. https://doi.org/10.1155/2017/4371714

    Article  CAS  Google Scholar 

  63. Ringuet MT, Hunne B, Lenz M et al (2021) Analysis of bioavailability and induction of glutathione peroxidase by dietary nanoelemental, organic and inorganic selenium. Nutrients 13:1073. https://doi.org/10.3390/nu13041073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Surai PF, Kochish II, Fisinin VI, Velichko OA (2018) Selenium in poultry nutrition: from sodium selenite to organic selenium sources. Poult Sci J 55:79–93. https://doi.org/10.2141/jpsa.0170132

    Article  CAS  Google Scholar 

  65. Ji L, Nazarali A, Paterson P (2008) Protein–energy malnutrition increases activation of the transcription factor, nuclear factor κB, in the gerbil hippocampus following global ischemia☆. J Nutr Biochem 19:770–777. https://doi.org/10.1016/j.jnutbio.2007.09.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Bao B, Prasad AS, Beck FWJ et al (2008) Zinc supplementation decreases oxidative stress, incidence of infection, and generation of inflammatory cytokines in sickle cell disease patients. Transl Res 152:67–80. https://doi.org/10.1016/j.trsl.2008.06.001

    Article  CAS  PubMed  Google Scholar 

  67. Shah SA, Yoon GH, Kim H-O, Kim MO (2015) Vitamin C neuroprotection against dose-dependent glutamate-induced neurodegeneration in the postnatal brain. Neurochem Res 40:875–884. https://doi.org/10.1007/s11064-015-1540-2

    Article  CAS  PubMed  Google Scholar 

  68. Surai PF, Kochish II, Romanov MN, Griffin DK (2019) Nutritional modulation of the antioxidant capacities in poultry: the case of vitamin E. Poult Sci 98:4030–4041. https://doi.org/10.3382/ps/pez072

    Article  CAS  PubMed  Google Scholar 

  69. Carr AC, Rosengrave PC, Bayer S et al (2017) Hypovitaminosis C and vitamin C deficiency in critically ill patients despite recommended enteral and parenteral intakes. Crit Care 21:300. https://doi.org/10.1186/s13054-017-1891-y

    Article  PubMed  PubMed Central  Google Scholar 

  70. Zingg J-M (2015) Vitamin E: a role in signal transduction. Annu Rev Nutr 35:135–173. https://doi.org/10.1146/annurev-nutr-071714-034347

    Article  CAS  PubMed  Google Scholar 

  71. Busso D, David A, Penailillo R et al (2021) Intake of vitamin E and C in women of reproductive age: results from the Latin American Study of Nutrition and Health (ELANS). Nutrients 13:1954. https://doi.org/10.3390/nu13061954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Calderón Guzmán D, Barragán Mejía G, Hernández García E, Juárez Olguín H (2006) Effect of nutritional status and ozone exposure on some biomarkers of oxidative stress in rat brain regions. Nutr Cancer 55:195–200. https://doi.org/10.1207/s15327914nc5502_11

    Article  PubMed  Google Scholar 

  73. Mulay S, Varma DR, Solomon S (1982) Influence of protein deficiency in rats on hormonal status and cytoplasmic glucocorticoid receptors in maternal and fetal tissues. J Endocrinol 95:49–58. https://doi.org/10.1677/joe.0.0950049

    Article  CAS  PubMed  Google Scholar 

  74. Kumar P, Yadav B, Yadav S (2013) Effect of zinc and selenium supplementation on antioxidative status of seminal plasma and testosterone, T 4 and T 3 level in goat blood serum. J Appl Anim Res 41:382–386. https://doi.org/10.1080/09712119.2013.783482

    Article  CAS  Google Scholar 

  75. Dkhil M, Zrieq R, Al-Quraishy S, Abdel Moneim A (2016) Selenium nanoparticles attenuate oxidative stress and testicular damage in streptozotocin-induced diabetic rats. Molecules 21:1517. https://doi.org/10.3390/molecules21111517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kamada H, Nonaka I, Takenouchi N, Amari M (2014) Effects of selenium supplementation on plasma progesterone concentrations in pregnant heifers. Anim Sci J 85:241–246. https://doi.org/10.1111/asj.12139

    Article  CAS  PubMed  Google Scholar 

  77. Kamada H (2016) Effects of selenium-rich yeast supplementation on the plasma progesterone levels of postpartum dairy cows. Asian Australas J Anim Sci 30:347–354. https://doi.org/10.5713/ajas.16.0372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Sunar F, Baltaci AK, Ergene N, Mogulkoc R (2009) Zinc deficiency and supplementation in ovariectomized rats: their effect on serum estrogen and progesterone levels and their relation to calcium and phosphorus. Pak J Pharm Sci 22:150–154

    CAS  PubMed  Google Scholar 

  79. Xue Y, Guo C, Hu F et al (2019) Maternal undernutrition induces fetal hepatic lipid metabolism disorder and affects the development of fetal liver in a sheep model. FASEB J 33:9990–10004. https://doi.org/10.1096/fj.201900406R

    Article  CAS  PubMed  Google Scholar 

  80. Hasani M, Djalalinia S, Sharifi F et al (2018) Effect of selenium supplementation on lipid profile: a systematic review and meta-analysis. Horm Metab Res 50:715–727. https://doi.org/10.1055/a-0749-6655

    Article  CAS  PubMed  Google Scholar 

  81. Jamilian M, Razavi M, Fakhrie Kashan Z et al (2015) Metabolic response to selenium supplementation in women with polycystic ovary syndrome: a randomized, double-blind, placebo-controlled trial. Clin Endocrinol 82:885–891. https://doi.org/10.1111/cen.12699

    Article  CAS  Google Scholar 

  82. Asbaghi O, Sadeghian M, Fouladvand F et al (2020) Effects of zinc supplementation on lipid profile in patients with type 2 diabetes mellitus: a systematic review and meta-analysis of randomized controlled trials. Nutr Metab Cardiovasc Dis 30:1260–1271. https://doi.org/10.1016/j.numecd.2020.03.021

    Article  CAS  PubMed  Google Scholar 

  83. Abd El-Hack ME, Alagawany M, Salah AS et al (2018) Effects of dietary supplementation of zinc oxide and zinc methionine on layer performance, egg quality, and blood serum indices. Biol Trace Elem Res 184:456–462. https://doi.org/10.1007/s12011-017-1190-0

    Article  CAS  PubMed  Google Scholar 

  84. Guo C-H, Chen P-C, Hsu G-S, Wang C-L (2013) Zinc supplementation alters plasma aluminum and selenium status of patients undergoing dialysis: a pilot study. Nutrients 5:1456–1470. https://doi.org/10.3390/nu5041456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors appreciate the efforts of Mr. S.O. Adenekan for the technical assistance. We also thank the anonymous reviewers for their thoroughness and constructive criticisms.

Author information

Authors and Affiliations

Authors

Contributions

Olusegun Lateef Adebayo and Gbenga Adebola Adenuga contributed to the study conception and design. Also, the first draft of the manuscript was written by Olusegun Lateef Adebayo and all authors commented on previous versions of the manuscript. Adedayo Adedeji Obadimu carried out the major laboratory work and Adesewa Omolara Tugbobo-Amisu joined in data collection. Bamidele Sanya Fagbohunka joined in the supervision of the work. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Olusegun Lateef Adebayo.

Ethics declarations

Ethics Approval

This study was performed in line with the NIH Guidelines for Humane Use and Care of Laboratory Animals. Approval was granted by the Ethics Committee of Olabisi Onabanjo University, Ogun State, Nigeria.

Consent to Participate

Not applicable

Consent to Publish

Not applicable

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Obadimu, A.A., Adebayo, O.L., Tugbobo-Amisu, A.O. et al. Effect of Selenium and Zinc Supplementation on Reproductive Organs Following Postnatal Protein Malnutrition. Biol Trace Elem Res 202, 1126–1139 (2024). https://doi.org/10.1007/s12011-023-03751-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-023-03751-8

Keywords

Navigation