Skip to main content
Log in

Impact of Dietary Probiotics on the Immune and Reproductive Physiology of Pubertal Male Japanese Quail (Coturnix coturnix japonica) Administered at the Onset of Pre-Puberty

  • Research
  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

Fertility in males is dependent on the proper production of sperms involving the synchronization of numerous factors like oxidative stress, inflammatory processes, and hormonal regulation. Inflammation associated with oxidative stress is also known to impair sperm function. Nutritional factors like probiotics and prebiotics have the potential benefits to modulate these factors which may enhance male fertility. In the present study, immature male Japanese quail at the beginning of 3rd week were administered with Lactobacillus rhamnosus (L), Bifidobacterium longum (B), and mannan-oligosaccharides (M) through dietary supplementation in individual groups as well as in combinations like LB and MLB. Markers of oxidative stress including SOD and catalase were examined by native PAGE; inflammatory biomarkers (IL-1β, IL-10, and NFκB), apoptotic markers (caspase 3 and caspase 7), steroidal hormones, and their receptors estrogen receptor alpha (ERα) and beta (ERβ) were assessed in testis. The study reveals that dietary supplementation of 1% L, B, and M in combination significantly and positively increases the overall growth of immature male quail specifically testicular weight and gonadosomatic index (GSI). Furthermore, significant improvement in testicular cell size; increased steroidal hormones like testosterone, FSH, and LH levels; increase in SOD, catalase enzymes; decrease in apoptotic factors Caspase 3, Caspase 7 and immune system strength observed indicated by a decrease in expression of IL-1β, NFκB; and increase of IL-10 in testis when LBM was used in combination. These variations are attributed to the increase in testicular estrogen receptors alpha and beta, facilitated by the neuroendocrine gonadal axis, ultimately leading to improved male fertility. It can be concluded that the dietary supplementation in combination with L, B, and M enhances male fertility in immature quail by increased expression of estrogen receptors via gut microbiota modulation. It also sheds light on the potential use of these nutritional factors in avian species as therapeutic interventions to overcome low fertility problems in quail thereby benefitting the poultry industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

The data supporting the results reported in the paper can be assessed and it includes the original data generated in the research.

Abbreviations

GSI:

Gonadosomatic index

ART:

Assisted reproductive technologies

FAO:

Food and Agriculture Organization of the United Nations

MOS:

Mannan-oligosaccharides

SCFAs:

Short chain fatty acids

ERα:

Estrogen receptors alpha

ERβ:

Estrogen receptors beta

GIT:

Gastrointestinal tract

IL:

Interleukin

Cfu:

Colony forming unit

H2O2 :

Hydrogen peroxide

OD:

Optical density

MDA:

Malondialdehyde

LPO:

Lipid peroxidation

AOPP:

Advanced oxidation protein product

SOD:

Superoxide dismutase

CAT:

Catalase

GSH:

Total glutathione

SDS:

Sodium dodecyl sulphate

PAGE:

Polyacrylamide gel electrophoresis

PVDF:

Polyvinylidene difluoride

ELISA:

Enzyme-linked immunosorbent assay

References

  1. Agarwal A et al (2015) A unique view on male infertility around the globe. Reprod Biol Endocrinol 13(1):1–9

    Article  Google Scholar 

  2. Harris E (2023) Infertility affects 1 in 6 people globally. JAMA

  3. Feng T, Liu Y (2022) Microorganisms in the reproductive system and probiotic’s regulatory effects on reproductive health. Comput Struct Biotechnol J

  4. Hill C et al (2014) The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol 11(8):506–514

    Article  PubMed  Google Scholar 

  5. Joint F (2002) WHO working group report on drafting guidelines for the evaluation of probiotics in food. Ontario, Canada, London, p 30

    Google Scholar 

  6. Gibson GR et al (2004) Dietary modulation of the human colonic microbiota: updating the concept of prebiotics. Nutr Res Rev 17(2):259–275

    Article  PubMed  CAS  Google Scholar 

  7. Pineiro M et al (2008) FAO Technical meeting on prebiotics. J Clin Gastroenterol 42:S156–S159

    Article  PubMed  Google Scholar 

  8. Voidarou C et al (2020) Fermentative foods: microbiology, biochemistry, potential human health benefits and public health issues. Foods 10(1):69

    Article  PubMed  PubMed Central  Google Scholar 

  9. Gibson GR et al (2010) Dietary prebiotics: current status and new definition. Food Sci Technol Bull Funct Foods 7(1):1–19

    Article  Google Scholar 

  10. Bindels LB et al (2015) Towards a more comprehensive concept for prebiotics. Nat Rev Gastroenterol Hepatol 12(5):303–310

    Article  PubMed  CAS  Google Scholar 

  11. Morrison DJ, Preston T (2016) Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes 7(3):189–200

    Article  PubMed  PubMed Central  Google Scholar 

  12. Wong JM et al (2006) Colonic health: fermentation and short chain fatty acids. J Clin Gastroenterol 40(3):235–243

    Article  PubMed  CAS  Google Scholar 

  13. Acconcia F, Marino M (2018) Steroid hormones: synthesis, secretion, and transport. Principles of endocrinology and hormone action, p 43–72

  14. Miller WL, Auchus RJ (2011) The molecular biology, biochemistry, and physiology of human steroidogenesis and its disorders. Endocr Rev 32(1):81–151

    Article  PubMed  CAS  Google Scholar 

  15. Osz J et al (2012) Structural basis for a molecular allosteric control mechanism of cofactor binding to nuclear receptors. Proc Natl Acad Sci 109(10):E588–E594

    Article  PubMed  PubMed Central  Google Scholar 

  16. O’donnell L et al (2001) Estrogen and spermatogenesis. Endocr Rev 22(3):289–318

    Article  PubMed  Google Scholar 

  17. Baghel K, Niranjan MK, Srivastava R (2020) Water and food restriction decreases immunoreactivity of oestrogen receptor alpha and antioxidant activity in testes of sexually mature Coturnix coturnix japonica. J Anim Physiol Anim Nutr 104(6):1738–1747

    Article  CAS  Google Scholar 

  18. Rego AC, Oliveira CR (2003) Mitochondrial dysfunction and reactive oxygen species in excitotoxicity and apoptosis: implications for the pathogenesis of neurodegenerative diseases. Neurochem Res 28(10):1563–1574

    Article  PubMed  CAS  Google Scholar 

  19. Kocsis T et al (2020) Probiotics have beneficial metabolic effects in patients with type 2 diabetes mellitus: a meta-analysis of randomized clinical trials. Sci Rep 10(1):1–14

    Article  Google Scholar 

  20. Ervin SM et al (2019) Gut microbial β-glucuronidases reactivate estrogens as components of the estrobolome that reactivate estrogens. J Biol Chem 294(49):18586–18599

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Shin J-H et al (2019) Serum level of sex steroid hormone is associated with diversity and profiles of human gut microbiome. Res Microbiol 170(4–5):192–201

    Article  PubMed  CAS  Google Scholar 

  22. Sui Y, Wu J, Chen J (2021) The role of gut microbial β-glucuronidase in estrogen reactivation and breast cancer. Front Cell Dev Biol 9:631552

    Article  PubMed  PubMed Central  Google Scholar 

  23. Plottel CS, Blaser MJ (2011) Microbiome and malignancy. Cell Host Microbe 10(4):324–335

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Baghel K, Srivastava R (2021) Stress and steroid interaction modulates expression of estrogen receptor alpha in the brain, pituitary, and testes of immature Gallus gallus domesticus. Stress 24(6):931–944

    Article  PubMed  CAS  Google Scholar 

  25. Loveland KL et al (2017) Cytokines in male fertility and reproductive pathologies: immunoregulation and beyond. Front Endocrinol 8:307

    Article  Google Scholar 

  26. Hedger MP, Meinhardt A (2003) Cytokines and the immune-testicular axis. J Reprod Immunol 58(1):1–26

    Article  PubMed  CAS  Google Scholar 

  27. Ware CF (2011) The TNF receptor super family in immune regulation. Immunol Rev 244(1):5–8

    Article  PubMed  CAS  Google Scholar 

  28. Suo H et al (2016) Lactobacillus fermentum Suo attenuates HCl/ethanol induced gastric injury in mice through its antioxidant effects. Nutrients 8(3):155

    Article  PubMed  PubMed Central  Google Scholar 

  29. Inatomi T, Otomaru K (2018) Effect of dietary probiotics on the semen traits and antioxidative activity of male broiler breeders. Sci Rep 8(1):5874

    Article  PubMed  PubMed Central  Google Scholar 

  30. Stefanini M, Martino CD, Zamboni L (1967) Fixation of ejaculated spermatozoa for electron microscopy. Nature 216:173–174

    Article  PubMed  CAS  Google Scholar 

  31. Baghel K, Srivastava R (2021) Photoperiod dependent expression of estrogen receptor alpha in testes of Japanese quail: involvement of Withania somnifera in apoptosis amelioration. Biochem Biophys Res Commun 534:957–965

    Article  PubMed  CAS  Google Scholar 

  32. Baghel K, Srivastava R (2020) Effect of estrogen and stress on estrogen receptor 1 in the HPG axis of immature male Gallus gallus domesticus: involvement of anti-oxidant system. Theriogenology 155:98–113

    Article  PubMed  CAS  Google Scholar 

  33. Sinha AK (1972) Colorimetric assay of catalase. Anal Biochem 47(2):389–394

    Article  PubMed  CAS  Google Scholar 

  34. Niranjan MK, Koiri RK, Srivastava R (2021) Expression of estrogen receptor alpha in response to stress and estrogen antagonist tamoxifen in the shell gland of Gallus gallus domesticus: involvement of anti-oxidant system and estrogen. Stress 24(3):261–272

    Article  PubMed  CAS  Google Scholar 

  35. Alizadeh M et al (2017) Maternal antibody decay and antibody-mediated immune responses in chicken pullets fed prebiotics and synbiotics. Poult Sci 96(1):58–64

    Article  PubMed  CAS  Google Scholar 

  36. Placer ZA, Cushman LL, Johnson BC (1966) Estimation of product of lipid peroxidation (malonyl dialdehyde) in biochemical systems. Anal Biochem 16(2):359–364

    Article  PubMed  CAS  Google Scholar 

  37. Scavuzzi BM et al (2018) Increased lipid and protein oxidation and lowered anti-oxidant defenses in systemic lupus erythematosus are associated with severity of illness, autoimmunity, increased adhesion molecules, and Th1 and Th17 immune shift. Immunol Res 66:158–171

    Article  PubMed  CAS  Google Scholar 

  38. Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44(1):276–287

    Article  PubMed  CAS  Google Scholar 

  39. Yates D (1984) Methods of enzymatic analysis Volume II. samples, reagents, assessment of results Volume III. enzymes I: oxido‐reductases, transferases Volume IV. enzymes II: esterases, glycesidases, lyases, ligases editor‐in‐chief: Hans Ulrich Bergmeyer Verlag Chemie; Weinheim, Dearfield Beach, FL, Basel, 1983 volume IV, 426 pages. DM 245.00/volume. Wiley Online Library

  40. Wang C et al (2017) Inhibition of calpains protects Mn-induced neurotransmitter release disorders in synaptosomes from mice: involvement of SNARE complex and synaptic vesicle fusion. Sci Rep 7(1):1–11

    PubMed  PubMed Central  Google Scholar 

  41. Jollow D et al (1974) Bromobenzene-induced liver necrosis. Protective role of glutathione and evidence for 3, 4-bromobenzene oxide as the hepatotoxic metabolite. Pharmacology 11(3):151–169

    Article  PubMed  CAS  Google Scholar 

  42. Niranjan MK, Srivastava R (2019) Expression of estrogen receptor alpha in developing brain, ovary and shell gland of Gallus gallus domesticus: impact of stress and estrogen. Steroids 146:21–33

    Article  PubMed  CAS  Google Scholar 

  43. Gupta V, Srivastava R (2022) 2.45 GHz microwave radiation induced oxidative stress: role of inflammatory cytokines in regulating male fertility through estrogen receptor alpha in Gallus gallus domesticus. Biochem Biophys Res Commun 629:61–70

    Article  PubMed  CAS  Google Scholar 

  44. Rawat D et al (2020) SIRT1-mediated amelioration of oxidative stress in kidney of alcohol-aflatoxin-B1-induced hepatocellular carcinoma by resveratrol is catalase dependent and GPx independent. J Biochem Mol Toxicol 34(11):e22576

    Article  PubMed  CAS  Google Scholar 

  45. Zhou M et al (2019) Effects of mannanoligosaccharide supplementation on the growth performance, immunity, and oxidative status of partridge shank chickens. Animals 9(10):817

    Article  PubMed  PubMed Central  Google Scholar 

  46. Rodjan P et al (2018) Effect of organic acids or probiotics alone or in combination on growth performance, nutrient digestibility, enzyme activities, intestinal morphology and gut microflora in broiler chickens. J Anim Physiol Anim Nutr 102(2):e931–e940

    Article  CAS  Google Scholar 

  47. Naseem S, King A (2020) Effect of Lactobacilli on production and selected compounds in blood, the liver, and manure of laying hens. J Appl Poultry Res 29(2):339–351

    Article  CAS  Google Scholar 

  48. Rebourcet D et al (2019) Relationship of transcriptional markers to Leydig cell number in the mouse testis. PLoS ONE 14(7):e0219524

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Guercio G et al (2020) Estrogens in human male gonadotropin secretion and testicular physiology from infancy to late puberty. Front Endocrinol 11:72

    Article  Google Scholar 

  50. Yaşar P et al (2017) Molecular mechanism of estrogen–estrogen receptor signaling. Reprod Med Biol 16(1):4–20

    Article  PubMed  Google Scholar 

  51. Wang Y et al (2017) Effects of dietary Bacillus licheniformis on gut physical barrier, immunity, and reproductive hormones of laying hens. Probiotics Antimicrob Proteins 9:292–299

    Article  PubMed  CAS  Google Scholar 

  52. Wang J et al (2021) Differential analysis of gut microbiota and the effect of dietary Enterococcus faecium supplementation in broiler breeders with high or low laying performance. Poult Sci 100(2):1109–1119

    Article  PubMed  CAS  Google Scholar 

  53. Xu H et al (2023) Probiotic mediated intestinal microbiota and improved performance, egg quality and ovarian immune function of laying hens at different laying stage. Front Microbiol 14:1041072

    Article  PubMed  PubMed Central  Google Scholar 

  54. Sabeti P et al (2016) Etiologies of sperm oxidative stress. Int J Reprod Biomed 14(4):231

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Kurkowska W et al (2020) Oxidative stress is associated with reduced sperm motility in normal semen. Am J Mens Health 14(5):1557988320939731

    Article  PubMed  PubMed Central  Google Scholar 

  56. Abbasi B, Abbasi H, Niroumand H (2021) Synbiotic (FamiLact) administration in idiopathic male infertility enhances sperm quality, DNA integrity, and chromatin status: a triple-blinded randomized clinical trial. Int J Reprod BioMed 19(3):235

    PubMed  PubMed Central  CAS  Google Scholar 

  57. Tetel MJ et al (2018) Steroids, stress and the gut microbiome-brain axis. J Neuroendocrinol 30(2):e12548

    Article  Google Scholar 

  58. Ye L et al (2021) Impacts of immunometabolism on male reproduction. Front Immunol 12:658432

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Xia Y et al (2020) Lactobacillus plantarum AR113 alleviates DSS-induced colitis by regulating the TLR4/MyD88/NF-κB pathway and gut microbiota composition. J Funct Foods 67:103854

    Article  CAS  Google Scholar 

  60. Hong CY et al (2004) Molecular mechanism of suppression of testicular steroidogenesis by proinflammatory cytokine tumor necrosis factor alpha. Mol Cell Biol 24(7):2593–2604

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Baghel K, Niranjan MK, Srivastava R (2023) Withania somnifera inhibits photorefractoriness which triggers neuronal apoptosis in both pre-optic and paraventricular hypothalamic area of Coturnix coturnix japonica: involvement of oxidative stress induced p53 dependent Caspase-3 mediated low immunoreactivity of estrogen receptor alpha. Photochem Photobiol Sci 1–14

  62. Lei B et al (2017) Apoptotic and nonapoptotic function of caspase 7 in spermatogenesis. Asian J Androl 19(1):47

    Article  PubMed  CAS  Google Scholar 

  63. Yan F, Polk DB (2002) Probiotic bacterium prevents cytokine-induced apoptosis in intestinal epithelial cells. J Biol Chem 277(52):50959–50965

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank DST-FIST sponsored Department of Zoology, Dr. Harisingh Gour Vishwavidyalaya, Sagar (M.P.), India, for providing infrastructure and instrumentation facility and University Grant Commission, India, for providing financial support as non-NET research fellowship to Aamir Khan. The authors also thank Unique Biotech Limited (UBL), Hyderabad, India, for providing probiotic strains.

Author information

Authors and Affiliations

Authors

Contributions

AK: Writing- original draft, methodology and formal analysis; NK- Review & editing; RS: Conceptualization, visualization, editing and supervision.

Corresponding author

Correspondence to Rashmi Srivastava.

Ethics declarations

The authors affirm that they have no identifiable financial interests or personal relationships that could have influenced the findings presented in this paper.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, A., Kango, N. & Srivastava, R. Impact of Dietary Probiotics on the Immune and Reproductive Physiology of Pubertal Male Japanese Quail (Coturnix coturnix japonica) Administered at the Onset of Pre-Puberty. Probiotics & Antimicro. Prot. (2024). https://doi.org/10.1007/s12602-023-10209-9

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12602-023-10209-9

Keywords

Navigation