Skip to main content

Advertisement

Log in

Alleviative Effect of Lactoferrin Interventions Against the Hepatotoxicity Induced by Titanium Dioxide Nanoparticles

  • Research
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The current study was designed to investigate the alleviative effect of lactoferrin interventions against the hepatotoxicity induced by titanium dioxide nanoparticles (TiO2-NPs). Thirty male Wistar rats were divided into six groups with 5 rats in each group. The first and second groups were intragastrically administered normal saline and TiO2-NPs (100 mg/kg body weight) as the negative control (NC) and TiO2-NP groups. The third, fourth, and fifth groups were intragastrically administered lactoferrin at concentrations of 100, 200, and 400 mg/kg body weight in addition to TiO2-NPs (100 mg/kg body weight). The sixth group was intragastrically administered Fuzheng Huayu (FZHY) capsules at a concentration of 4.6 g/kg body weight in addition to TiO2-NPs (100 mg/kg body weight) as the positive control group. After treatment for 4 weeks, the concentrations of lactoferrin were optimized based on the liver index and function results. Subsequently, the alleviative effects of lactoferrin interventions against TiO2-NP-induced hepatotoxicity in rat liver tissues, including the effects on histological damage, oxidative stress-related damage, inflammation, fibrosis, DNA damage, apoptosis, and gene expression, were investigated using histopathological, biochemical, and transcriptomic assays. The results showed that 200 mg/kg lactoferrin interventions for 4 weeks not only ameliorated the liver dysfunction and histopathological damage caused by TiO2-NP exposure but also inhibited the oxidative stress-related damage, inflammation, fibrosis, DNA damage, and apoptosis in the liver tissues of TiO2-NP-exposed rats. The transcriptomic results confirmed that the alleviative effect of lactoferrin interventions against the TiO2-NP exposure–induced hepatotoxicity was related to the activation of the PI3K/AKT signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article and its supplementary information files.

References

  1. Lungu II, Grumezescu AM, Volceanov A, Andronescu E (2019) Nanobiomaterials used in cancer therapy: an up-to-date overview. Molecules 24:3547. https://doi.org/10.3390/molecules24193547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mercatali L, Vanni S, Miserocchi G, Liverani C, Spadazzi C, Cocchi C, Calabrese C, Gurrieri L, Fausti V, Riva N, Genovese D, Lucarelli E, Focarete ML, Ibrahim T, Calabrò L, De Vita A (2022) The emerging role of cancer nanotechnology in the panorama of sarcoma. Front Bioeng Biotechnol 10:953555. https://doi.org/10.3389/fbioe.2022.953555

    Article  PubMed  PubMed Central  Google Scholar 

  3. Rhaman MM, Islam MR, Akash S, Mim M, Noor Alam M, Nepovimova E, Valis M, Kuca K, Sharma R (2022) Exploring the role of nanomedicines for the therapeutic approach of central nervous system dysfunction: at a glance. Front Cell Dev Biol 10:989471. https://doi.org/10.3389/fcell.2022.989471

    Article  PubMed  PubMed Central  Google Scholar 

  4. El-Seedi HR, El-Shabasy RM, SaM K, Saeed A, Shah A, Shah R, Iftikhar FJ, Abdel-Daim MM, Omri A, Hajrahand NH, Sabir JSM, Zou X, Halabi MF, Sarhan W, Guo W (2019) Metal nanoparticles fabricated by green chemistry using natural extracts: biosynthesis, mechanisms, and applications. RSC Adv 9:24539–24559. https://doi.org/10.1039/c9ra02225b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zahin N, Anwar R, Tewari D, Kabir MT, Sajid A, Mathew B, Uddin MS, Aleya L, Abdel-Daim MM (2019) Nanoparticles and its biomedical applications in health and diseases: special focus on drug delivery. Environ Sci Pollut Res 27:19151–19168. https://doi.org/10.1007/s11356-019-05211-0

    Article  CAS  Google Scholar 

  6. Grande F, Tucci P (2016) Titanium dioxide nanoparticles: a risk for human health? Mini Rev Med Chem 16:762–769. https://doi.org/10.2174/1389557516666160321114341

    Article  CAS  PubMed  Google Scholar 

  7. Carmo TLL, Siqueira PR, Azevedo VC, Tavares D, Pesenti EC, Cestari MM, Martinez CBR, Fernandes MN (2019) Overview of the toxic effects of titanium dioxide nanoparticles in blood, liver, muscles, and brain of a Neotropical detritivorous fish. Environ Toxicol 34:457–468. https://doi.org/10.1002/tox.22699

    Article  CAS  PubMed  Google Scholar 

  8. Hou J, Wang L, Wang C, Zhang S, Liu H, Li S, Wang X (2019) Toxicity and mechanisms of action of titanium dioxide nanoparticles in living organisms. J Environ Sci (China) 75:40–53. https://doi.org/10.1016/j.jes.2018.06.010

    Article  CAS  PubMed  Google Scholar 

  9. Hong J, Zhang YQ (2016) Murine liver damage caused by exposure to nano-titanium dioxide. Nanotechnology 27:112001. https://doi.org/10.1088/0957-4484/27/11/112001

    Article  CAS  PubMed  Google Scholar 

  10. Zhang X, Li W, Yang Z (2015) Toxicology of nanosized titanium dioxide: an update. Arch Toxicol 89:2207–2217. https://doi.org/10.1007/s00204-015-1594-6

    Article  CAS  PubMed  Google Scholar 

  11. Li Y, Zhong M, He X, Zhang R, Fu Y, You R, Tao F, Fang L, Li Y, Zhai Q (2022) The combined effect of titanium dioxide nanoparticles and cypermethrin on male reproductive toxicity in rats. Environ Sci Pollut Res Int 30:22176–22187. https://doi.org/10.1007/s11356-022-23796-x

    Article  CAS  PubMed  Google Scholar 

  12. Rolo D, Assunção R, Ventura C, Alvito P, Gonçalves L, Martins C, Bettencourt A, Jordan P, Vital N, Pereira J, Pinto F, Matos P, Silva MJ, Louro H (2022) Adverse outcome pathways associated with the ingestion of titanium dioxide nanoparticles-a systematic review. Nanomaterials (Basel) 12:3275. https://doi.org/10.3390/nano12193275

    Article  CAS  PubMed  Google Scholar 

  13. Heidari Z, Mohammadipour A, Haeri P, Ebrahimzadeh-Bideskan A (2019) The effect of titanium dioxide nanoparticles on mice midbrain substantia nigra. Iran J Basic Med Sci 22:745–751. https://doi.org/10.22038/ijbms.2019.33611.8018

    Article  PubMed  PubMed Central  Google Scholar 

  14. Wang S, Kang X, Alenius H, Wong SH, Karisola P, El-Nezami H (2022) Oral exposure to Ag or TiO(2) nanoparticles perturbed gut transcriptome and microbiota in a mouse model of ulcerative colitis. Food Chem Toxicol 169:113368. https://doi.org/10.1016/j.fct.2022.113368

    Article  CAS  PubMed  Google Scholar 

  15. Heringa MB, Geraets L, Van Eijkeren JC, Vandebriel RJ, De Jong WH, Oomen AG (2016) Risk assessment of titanium dioxide nanoparticles via oral exposure, including toxicokinetic considerations. Nanotoxicology 10:1515–1525. https://doi.org/10.1080/17435390.2016.1238113

    Article  CAS  PubMed  Google Scholar 

  16. Kandeil MA, Mohammed ET, Hashem KS, Aleya L, Abdel-Daim MM (2019) Moringa seed extract alleviates titanium oxide nanoparticles (TiO2-NPs)-induced cerebral oxidative damage, and increases cerebral mitochondrial viability. Environ Sci Pollut Res 27:19169–19184. https://doi.org/10.1007/s11356-019-05514-2

    Article  CAS  Google Scholar 

  17. Hou J, Wan X-Y, Wang F, Xu G-F, Liu Z, Zhang T-B (2009) Effects of titanium dioxide nanoparticles on development and maturation of rat preantral follicle in vitro. Acad J Second Mil Med Uni 29:869–873. https://doi.org/10.3724/SP.J.1008.2009.00869

    Article  CAS  Google Scholar 

  18. Kubo-Irie M, Uchida H, Mastuzawa S, Yoshida Y, Shinkai Y, Suzuki K, Yokota S, Oshio S, Takeda K (2014) Dose–dependent biodistribution of prenatal exposure to rutile-type titanium dioxide nanoparticles on mouse testis. J Nanopart Res 16:2284. https://doi.org/10.1007/s11051-014-2284-7

    Article  CAS  Google Scholar 

  19. Su J, Duan X, Qiu Y, Zhou L, Zhang H, Gao M, Liu Y, Zou Z, Qiu J, Chen C (2021) Pregnancy exposure of titanium dioxide nanoparticles causes intestinal dysbiosis and neurobehavioral impairments that are not significant postnatally but emerge in adulthood of offspring. J Nanobiotechnology 19:234. https://doi.org/10.1186/s12951-021-00967-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yamashita K, Yoshioka Y, Higashisaka K, Mimura K, Morishita Y, Nozaki M, Yoshida T, Ogura T, Nabeshi H, Nagano K, Abe Y, Kamada H, Monobe Y, Imazawa T, Aoshima H, Shishido K, Kawai Y, Mayumi T, Tsunoda S-I et al (2011) Silica and titanium dioxide nanoparticles cause pregnancy complications in mice. Nat Nanotechnol 6:321–328. https://doi.org/10.1038/nnano.2011.41

    Article  CAS  PubMed  Google Scholar 

  21. Hong F, Zhou Y, Zhao X, Sheng L, Wang L (2017) Maternal exposure to nanosized titanium dioxide suppresses embryonic development in mice. Int J Nanomedicine 12:6197–6204. https://doi.org/10.2147/ijn.s143598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Shakeel M, Jabeen F, Shabbir S, Asghar MS, Khan MS, Chaudhry AS (2015) Toxicity of nano-titanium dioxide (TiO2-NP) through various routes of exposure: a review. Biol Trace Elem Res 172:1–36. https://doi.org/10.1007/s12011-015-0550-x

    Article  CAS  PubMed  Google Scholar 

  23. Erriquez J, Bolis V, Morel S, Fenoglio I, Fubini B, Quagliotto P, Distasi C (2015) Nanosized TiO2 is internalized by dorsal root ganglion cells and causes damage via apoptosis. Nanomedicine 11:1309–1319. https://doi.org/10.1016/j.nano.2015.04.003

    Article  CAS  PubMed  Google Scholar 

  24. Hu JS, Li FC, Xu KZ, Ni M, Wang BB, Tian JH, Li YY, Shen WD, Li B (2016) Mechanisms of TiO2 NPs-induced phoxim metabolism in silkworm (Bombyx mori) fat body. Pestic Biochem Physiol 129:89–94. https://doi.org/10.1016/j.pestbp.2015.11.004

    Article  CAS  PubMed  Google Scholar 

  25. Liu Z, Zhang M, Han X, Xu H, Zhang B, Yu Q, Li M (2016) TiO2 nanoparticles cause cell damage independent of apoptosis and autophagy by impairing the ROS-scavenging system in Pichia pastoris. Chem Biol Interact 252:9–18. https://doi.org/10.1016/j.cbi.2016.03.029

    Article  CAS  PubMed  Google Scholar 

  26. Zhao Y, Tang Y, Liu S, Jia T, Zhou D, Xu H (2021) Foodborne TiO(2) nanoparticles induced more severe hepatotoxicity in fructose-induced metabolic syndrome mice via exacerbating oxidative stress-mediated intestinal barrier damage. Foods 10:986. https://doi.org/10.3390/foods10050986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang J, Fan Y (2014) Lung injury induced by TiO2 nanoparticles depends on their structural features: size, shape, crystal phases, and surface coating. Int J Mol Sci 15:22258–22278. https://doi.org/10.3390/ijms151222258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hu H, Li L, Guo Q, Jin S, Zhou Y, Oh Y, Feng Y, Wu Q, Gu N (2016) A mechanistic study to increase understanding of titanium dioxide nanoparticles-increased plasma glucose in mice. Food Chem Toxicol 95:175–187. https://doi.org/10.1016/j.fct.2016.07.010

    Article  CAS  PubMed  Google Scholar 

  29. Prasad S, Gupta SC, Tyagi AK (2017) Reactive oxygen species (ROS) and cancer: role of antioxidative nutraceuticals. Cancer Lett 387:95–105. https://doi.org/10.1016/j.canlet.2016.03.042

    Article  CAS  PubMed  Google Scholar 

  30. Ren J, Wang B, Li L, Li S, Ma Y, Su L, Liu G, Liu Y, Dai Y (2023) Glutathione ameliorates the meiotic defects of copper exposed ovine oocytes via inhibiting the mitochondrial dysfunctions. Ecotoxicol Environ Saf 251:114530. https://doi.org/10.1016/j.ecoenv.2023.114530

    Article  CAS  PubMed  Google Scholar 

  31. Kim BG, Lee PH, Lee SH, Park MK, Jang AS (2017) Effect of TiO2 nanoparticles on inflammasome-mediated airway inflammation and responsiveness. Allergy Asthma Immunol Res 9:257–264. https://doi.org/10.4168/aair.2017.9.3.257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hu H, Fan X, Yin Y, Guo Q, Yang D, Wei X, Zhang B, Liu J, Wu Q, Oh Y, Chen K, Feng Y, Hou L, Li L, Gu N (2019) Mechanisms of titanium dioxide nanoparticle-induced oxidative stress and modulation of plasma glucose in mice. Environ Toxicol 34:1221–1235. https://doi.org/10.1002/tox.22823

    Article  CAS  PubMed  Google Scholar 

  33. Liao F, Chen L, Liu Y, Zhao D, Peng W, Wang W, Feng S (2019) The size-dependent genotoxic potentials of titanium dioxide nanoparticles to endothelial cells. Environ Toxicol 34:1199–1207. https://doi.org/10.1002/tox.22821

    Article  CAS  PubMed  Google Scholar 

  34. Catalano V, Turdo A, Di Franco S, Dieli F, Todaro M, Stassi G (2013) Tumor and its microenvironment: a synergistic interplay. Semin Cancer Biol 23:522–532. https://doi.org/10.1016/j.semcancer.2013.08.007

    Article  CAS  PubMed  Google Scholar 

  35. Xu J, Nyga A, Li W, Zhang X, Gavara N, Knight MM, Shelton JC (2018) Cobalt ions stimulate a fibrotic response through matrix remodelling, fibroblast contraction and release of pro-fibrotic signals from macrophages. Eur Cell Mater 36:142–155. https://doi.org/10.22203/eCM.v036a11

    Article  CAS  PubMed  Google Scholar 

  36. Sun HF, Yang XL, Zhao Y, Tian Q, Chen MT, Zhao YY, Jin W (2019) Loss of TMEM126A promotes extracellular matrix remodeling, epithelial-to-mesenchymal transition, and breast cancer metastasis by regulating mitochondrial retrograde signaling. Cancer Lett 440-441:189–201. https://doi.org/10.1016/j.canlet.2018.10.018

    Article  CAS  PubMed  Google Scholar 

  37. Agarwal A, Gupta S, Sharma R (2005) Oxidative stress and its implications in female infertility - a clinician’s perspective. Reprod Biomed Online 11:641–650. https://doi.org/10.1016/s1472-6483(10)61174-1

    Article  CAS  PubMed  Google Scholar 

  38. Eble JA, De Rezende FF (2014) Redox-relevant aspects of the extracellular matrix and its cellular contacts via integrins. Antioxid Redox Signal 20:1977–1993. https://doi.org/10.1089/ars.2013.5294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sigg L, Yue Y, Schug H, Röhder L, Piccapietra F, Odzak N, Isaacson C, Groh K, Behra R, Schirmer K (2014) Chemical aspects of nanoparticle ecotoxicology. Chimia (Aarau) 68:806. https://doi.org/10.2533/chimia.2014.806

    Article  CAS  PubMed  Google Scholar 

  40. Lushchak VI (2014) Free radicals, reactive oxygen species, oxidative stress and its classification. Chem Biol Interact 224:164–175. https://doi.org/10.1016/j.cbi.2014.10.016

    Article  CAS  PubMed  Google Scholar 

  41. Kruzel ML, Zimecki M, Actor JK (2017) Lactoferrin in a context of inflammation-induced pathology. Front Immunol 8:1438. https://doi.org/10.3389/fimmu.2017.01438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hao L, Shan Q, Wei J, Ma F, Sun P (2019) Lactoferrin: major physiological functions and applications. Curr Protein Pept Sci 20:139–144. https://doi.org/10.2174/1389203719666180514150921

    Article  CAS  PubMed  Google Scholar 

  43. Wang B, Timilsena YP, Blanch E, Adhikari B (2019) Lactoferrin: structure, function, denaturation and digestion. Crit Rev Food Sci Nutr 59:580–596. https://doi.org/10.1080/10408398.2017.1381583

    Article  CAS  PubMed  Google Scholar 

  44. Abd El-Rahman SS, Ashwish NM, Ali ME (2023) Appraisal of the pre-emptive effect of lactoferrin against chromium-induced testicular toxicity in male rats. Biol Trace Elem Res. https://doi.org/10.1007/s12011-023-03605-3

  45. Li S, Liu M, Ma H, Jin Q, Ma Y, Wang C, Ren J, Liu G, Dai Y (2021) Ameliorative effect of recombinant human lactoferrin on the premature ovarian failure in rats after cyclophosphamide treatments. J Ovarian Res 14:17. https://doi.org/10.1186/s13048-020-00763-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Mayeur S, Spahis S, Pouliot Y, Levy E (2016) Lactoferrin, a pleiotropic protein in health and disease. Antioxid Redox Signal 24:813–836. https://doi.org/10.1089/ars.2015.6458

    Article  CAS  PubMed  Google Scholar 

  47. Du Y, Li D, Chen J, Li Y-H, Zhang Z, Hidayat K, Wan Z, Xu J-Y, Qin L-Q (2022) Lactoferrin improves hepatic insulin resistance and pancreatic dysfunction in high-fat diet and streptozotocin-induced diabetic mice. Nutr Res 103:47–58. https://doi.org/10.1016/j.nutres.2022.03.011

    Article  CAS  PubMed  Google Scholar 

  48. Hessin A, Hegazy R, Hassan A, Yassin N, Kenawy S (2015) Lactoferrin enhanced apoptosis and protected against thioacetamide-induced liver fibrosis in rats. Open Access Maced J Med Sci 3:195–201. https://doi.org/10.3889/oamjms.2015.038

    Article  PubMed  PubMed Central  Google Scholar 

  49. Farid AS, El Shemy MA, Nafie E, Hegazy AM, Abdelhiee EY (2019) Anti-inflammatory, anti-oxidant and hepatoprotective effects of lactoferrin in rats. Drug Chem Toxicol 44:286–293. https://doi.org/10.1080/01480545.2019.1585868

    Article  CAS  PubMed  Google Scholar 

  50. Jafari A, Rasmi Y, Hajaghazadeh M, Karimipour M (2018) Hepatoprotective effect of thymol against subchronic toxicity of titanium dioxide nanoparticles: biochemical and histological evidences. Environ Toxicol Pharmacol 58:29–36. https://doi.org/10.1016/j.etap.2017.12.010

    Article  CAS  PubMed  Google Scholar 

  51. Morgan A, Ibrahim MA, Galal MK, Ogaly HA, Abd-Elsalam RM (2018) Innovative perception on using Tiron to modulate the hepatotoxicity induced by titanium dioxide nanoparticles in male rats. Biomed Pharmacother 103:553–561. https://doi.org/10.1016/j.biopha.2018.04.064

    Article  CAS  PubMed  Google Scholar 

  52. Tung YT, Tang TY, Chen HL, Yang SH, Chong KY, Cheng WT, Chen CM (2014) Lactoferrin protects against chemical-induced rat liver fibrosis by inhibiting stellate cell activation. J Dairy Sci 97:3281–3291. https://doi.org/10.3168/jds.2013-7505

    Article  CAS  PubMed  Google Scholar 

  53. Tian H, Liu L, Li Z, Liu W, Sun Z, Xu Y, Wang S, Liang C, Hai Y, Feng Q, Zhao Y, Hu Y, Peng J (2019) Chinese medicine CGA formula ameliorates liver fibrosis induced by carbon tetrachloride involving inhibition of hepatic apoptosis in rats. J Ethnopharmacol 232:227–235. https://doi.org/10.1016/j.jep.2018.11.027

    Article  CAS  PubMed  Google Scholar 

  54. Liu G, Li S, Yuan H, Hao M, Wurihan YZ, Zhao J, Ma Y, Dai Y (2018) Effect of sodium alginate on mouse ovary vitrification. Theriogenology 113:78–84. https://doi.org/10.1016/j.theriogenology.2018.02.006

    Article  CAS  PubMed  Google Scholar 

  55. Jin Q, Liu G, Li SB, Yuan HH, Yun ZZ, Zhang WQ, Zhang S, Dai YF, Ma YZ (2019) Decellularized breast matrix as bioactive microenvironment for in vitro three-dimensional cancer culture. J Cell Physiol 234:3425–3435. https://doi.org/10.1002/jcp.26782

    Article  CAS  PubMed  Google Scholar 

  56. Shakeel M, Jabeen F, Iqbal R, Chaudhry AS, Zafar S, Ali M, Khan MS, Khalid A, Shabbir S, Asghar MS (2018) Assessment of titanium dioxide nanoparticles (TiO(2)-NPs) induced hepatotoxicity and ameliorative effects of Cinnamomum cassia in Sprague-Dawley rats. Biol Trace Elem Res 182:57–69. https://doi.org/10.1007/s12011-017-1074-3

    Article  CAS  PubMed  Google Scholar 

  57. Volkovova K, Handy RD, Staruchova M, Tulinska J, Kebis A, Pribojova J, Ulicna O, Kucharská J, Dusinska M (2015) Health effects of selected nanoparticles in vivo: liver function and hepatotoxicity following intravenous injection of titanium dioxide and Na-oleate-coated iron oxide nanoparticles in rodents. Nanotoxicology 9(Suppl 1):95–105. https://doi.org/10.3109/17435390.2013.815285

    Article  CAS  PubMed  Google Scholar 

  58. Sallam MF, Ahmed HMS, Diab KA, El-Nekeety AA, Abdel-Aziem SH, Sharaf HA, Abdel-Wahhab MA (2022) Improvement of the antioxidant activity of thyme essential oil against biosynthesized titanium dioxide nanoparticles-induced oxidative stress, DNA damage, and disturbances in gene expression in vivo. J Trace Elem Med Biol 73:127024. https://doi.org/10.1016/j.jtemb.2022.127024

    Article  CAS  PubMed  Google Scholar 

  59. Suzuki T, Miura N, Hojo R, Yanagiba Y, Suda M, Hasegawa T, Miyagawa M, Wang RS (2016) Genotoxicity assessment of intravenously injected titanium dioxide nanoparticles in gpt delta transgenic mice. Mutat Res Genet Toxicol Environ Mutagen 802:30–37. https://doi.org/10.1016/j.mrgentox.2016.03.007

    Article  CAS  PubMed  Google Scholar 

  60. Hong F, Ji J, Ze X, Zhou Y, Ze Y (2020) Liver inflammation and fibrosis induced by long-term exposure to nano titanium dioxide (TiO2) nanoparticles in mice and its molecular mechanism. J Biomed Nanotechnol 16:616–625. https://doi.org/10.1166/jbn.2020.2921

    Article  CAS  PubMed  Google Scholar 

  61. Shabbir S, Kulyar MF-E-A, Bhutta ZA, Boruah P, Asif M (2021) Toxicological consequences of titanium dioxide nanoparticles (TiO2NPs) and their jeopardy to human population. BioNanoScience 11:621–632. https://doi.org/10.1007/s12668-021-00836-3

    Article  PubMed  PubMed Central  Google Scholar 

  62. Chen Z, Han S, Zheng P, Zhang J, Zhou S, Jia G (2022) Landscape of lipidomic metabolites in gut-liver axis of Sprague–Dawley rats after oral exposure to titanium dioxide nanoparticles. Part Fibre Toxicol 19:53. https://doi.org/10.1186/s12989-022-00484-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Rosário F, Costa C, Lopes CB, Estrada AC, Tavares DS, Pereira E, Teixeira JP, Reis AT (2022) In Vitro hepatotoxic and neurotoxic effects of titanium and cerium dioxide nanoparticles, arsenic and mercury co-exposure. Int J Mol Sci 23:2737. https://doi.org/10.3390/ijms23052737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Waseem M, Kaushik P, Dutta S, Chakraborty R, Hassan MI, Parvez S (2022) Modulatory role of quercetin in mitochondrial dysfunction in titanium dioxide nanoparticle-induced hepatotoxicity. ACS Omega 7:3192–3202. https://doi.org/10.1021/acsomega.1c04740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Chang H, Li L, Deng Y, Song G, Wang Y (2023) Protective effects of lycopene on TiO(2) nanoparticle-induced damage in the liver of mice. J Appl Toxicol 43(6):913–928. https://doi.org/10.1002/jat.4433

    Article  CAS  PubMed  Google Scholar 

  66. Mohammed ET, Safwat GM (2020) Grape seed proanthocyanidin extract mitigates titanium dioxide nanoparticle (TiO(2)-NPs)-induced hepatotoxicity through TLR-4/NF-κB signaling pathway. Biol Trace Elem Res 196:579–589. https://doi.org/10.1007/s12011-019-01955-5

    Article  CAS  PubMed  Google Scholar 

  67. Levy E, Marcil V, Tagharist Ép Baumel S, Dahan N, Delvin E, Spahis S (2023) Lactoferrin, osteopontin and lactoferrin-osteopontin complex: a critical look on their role in perinatal period and cardiometabolic disorders. Nutrients 15:1394. https://doi.org/10.3390/nu15061394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Mancinelli R, Rosa L, Cutone A, Lepanto MS, Franchitto A, Onori P, Gaudio E, Valenti P (2020) Viral hepatitis and iron dysregulation: molecular pathways and the role of lactoferrin. Molecules 25:1997. https://doi.org/10.3390/molecules25081997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ordaz-Pichardo C, León-Sicairos N, Hernández-Ramírez VI, Talamás-Rohana P, De La Garza M (2012) Effect of bovine lactoferrin in a therapeutic hamster model of hepatic amoebiasis. Biochem Cell Biol 90:425–434. https://doi.org/10.1139/o11-084

    Article  CAS  PubMed  Google Scholar 

  70. Huang X, Liu G, Guo J, Su Z (2018) The PI3K/AKT pathway in obesity and type 2 diabetes. Int J Biol Sci 14:1483–1496. https://doi.org/10.7150/ijbs.27173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to express our gratitude to Mr. Shu-sheng Mao from the Clinical Medicine Research Center in the Affiliated Hospital of Inner Mongolia Medical University for his kind help.

Funding

This work was supported by the National Natural Science Foundation of China (82060567 to Gang Liu), Natural Science Foundation of Inner Mongolia (2020BS08014 to Gang Liu and 2020LH08028 to Liya Su), ZhiYuan project of Inner Mongolia Medical University (ZY0120025 to Liya Su), Outstanding Young Talents Cultivation Program of Grassland Elite in Inner Mongolia (Q202286 to Gang Liu), and Young Talent Cultivation Program of Inner Mongolia Medical University (YKD2020QNCX016 to Jiaxin Sun).

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Wenqi Zhang, Jiaxin Sun, Fangyuan Liu, Shubin Li, Xianjue Wang, Liya Su, and Gang Liu. The first draft of the manuscript was written by Gang Liu, and all the authors commented on previous versions of the manuscript. All the authors read and approved the final manuscript.

Corresponding author

Correspondence to Gang Liu.

Ethics declarations

Ethics approval

This study was performed in line with the principles of the Declaration of Helsinki. Approval was granted by the Ethics Committee of Inner Mongolia Medical University (NMGYKD-20190043-R1).

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary file 1

Supplementation Fig. 1Effect of lactoferrin supplementation on the gene expression pattern of TiO2-NPs exposed liver tissues. Note: NC, TiO2-NPs, Lactoferrin, and FZHY represent negative control, TiO2-NPs exposure, TiO2-NPs supplemented with lactoferrin, and TiO2-NPs supplemented with FZHY groups. Different lowercase letters in each column indicate significant differences between the corresponding experimental groups (p < 0.05).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Sun, J., Liu, F. et al. Alleviative Effect of Lactoferrin Interventions Against the Hepatotoxicity Induced by Titanium Dioxide Nanoparticles. Biol Trace Elem Res 202, 624–642 (2024). https://doi.org/10.1007/s12011-023-03702-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-023-03702-3

Keywords

Navigation