Skip to main content
Log in

The Antioxidant Activity of Betanin protects MRC-5 cells Against Cadmium Induced Toxicity

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Cadmium (Cd) can induce both acute and chronic effects in the lungs depending on the time and the exposure route. Betanin is a component derived from the roots of red beets and it is well-known for its antioxidant and anti-apoptosis effects. The current study aimed to survey the protective effects of betanin on cell toxicity induced by Cd. Different concentration of Cd alone and in combination with betanin was assessed in MRC-5 cells. The viability and oxidative stress were measured using resazurin and DCF-DA methods respectively. Apoptotic cells were assessed by PI staining of the fragmented DNA and western blot analysis detected the activation of caspase 3 and PARP proteins. Cd exposure for 24 h declined viability and increased ROS production in MRC-5 cells compared to the control group (p < 0.001). Also, Cd (35 μM) elevated DNA fragmentation (p < 0.05), and the level of caspase 3-cleaved and cleaved PARP proteins in MRC-5 cells (p < 0.001). Co-treatment of cells with betanin for 24 h significantly enhanced viability in concentrations of 1.25 and 2.5 μM (p < 0.001) and 5 μM (p < 0.05) and declined ROS generation (1.25 and 5 μM p < 0.001, and 2.5 μM p < 0.01). As well as, betanin reduced DNA fragmentation (p < 0.01), and the markers of apoptosis (p < 0.001) compared to the Cd-treated group. In conclusion, betanin protects lung cells against Cd-induced toxicity through antioxidant activity and inhibition of apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Data and materials supporting the results are available upon reasonable request from the corresponding author Zahra Tayarani-Najaran (Tayaraninz@mums.ac.ir).

References

  1. Matović V, Buha A, Ðukić-Ćosić D, Bulat Z (2015) Insight into the oxidative stress induced by lead and/or cadmium in blood, liver and kidneys. Food Chem Toxicol 78:130–140

    Article  PubMed  Google Scholar 

  2. Najeeb U, Jilani G, Ali S, Sarwar M, Xu L, Zhou W (2011) Insights into cadmium induced physiological and ultra-structural disorders in Juncus effusus L. and its remediation through exogenous citric acid. J Hazard Mater 186:565–574

    Article  CAS  PubMed  Google Scholar 

  3. Shayan M, Mehri S, Razavi BM, Hosseinzadeh H (2023) Minocycline protects PC12 cells against cadmium-induced neurotoxicity by modulating apoptosis. Biol Trace Elem Res 201:1946–1954

    Article  CAS  PubMed  Google Scholar 

  4. Soria J, Gauthier D, Falcoz Q, Flamant G, Mazza G (2013) Local CFD kinetic model of cadmium vaporization during fluid bed incineration of municipal solid waste. J Hazard Mater 248–249:276–284

    Article  PubMed  Google Scholar 

  5. Luevano J, Damodaran C (2014) A review of molecular events of cadmium-induced carcinogenesis. J Environ Pathol Toxicol Oncol 33:183–194

    Article  PubMed Central  PubMed  Google Scholar 

  6. Samarawickrama GJbMW, Elsevier/North Holland, Amsterdam (1979) The chemistry, biochemistry and biology of cadmium 370–373, North Holland, Amsterdam 

  7. Odewumi CO, Latinwo LM, Ruden ML, Badisa VL, Fils-Aime S, Badisa RB (2016) Modulation of cytokines and chemokines expression by NAC in cadmium chloride treated human lung cells. Environ Toxicol 31:1612–1619

    Article  CAS  PubMed  Google Scholar 

  8. Habeebu SS, Liu J, Klaassen CD (1998) Cadmium-induced apoptosis in mouse liver. Toxicol Appl Pharmacol 149:203–209

    Article  CAS  PubMed  Google Scholar 

  9. Ganguly K, Levänen B, Palmberg L, Åkesson A, Lindén A (2018) Cadmium in tobacco smokers: a neglected link to lung disease? Eur Respir Rev 27:1–8

  10. Lee BK, Kim Y (2012) Iron deficiency is associated with increased levels of blood cadmium in the Korean general population: analysis of 2008–2009 Korean National Health and Nutrition Examination Survey data. Environ Res 112:155–163

    Article  CAS  PubMed  Google Scholar 

  11. Yang CF, Shen HM, Shen Y, Zhuang ZX, Ong CN (1997) Cadmium-induced oxidative cellular damage in human fetal lung fibroblasts (MRC-5 cells). Environ Health Perspect 105:712–716

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Park JH, Lee BM, Kim HS (2021) Potential protective roles of curcumin against cadmium-induced toxicity and oxidative stress. J Toxicol Environ Health B Crit Rev 24:95–118

    Article  CAS  PubMed  Google Scholar 

  13. Karoui-Kharrat D, Kaddour H, Hamdi Y, Mokni M, Amri M, Mezghani S (2017) Response of antioxidant enzymes to cadmium-induced cytotoxicity in rat cerebellar granule neurons. Open Life Sci 12:113–119

    Article  CAS  Google Scholar 

  14. Kitamura M, Hiramatsu N (2010) The oxidative stress: endoplasmic reticulum stress axis in cadmium toxicity. Biometals 23:941–950

    Article  CAS  PubMed  Google Scholar 

  15. Matović V, Buha A, Bulat Z, Dukić-Ćosić D (2011) Cadmium toxicity revisited: focus on oxidative stress induction and interactions with zinc and magnesium. Arh Hig Rada Toksikol 62:65–76

    Article  PubMed  Google Scholar 

  16. Sarkar A, Ravindran G, Krishnamurthy V (2013) A brief review on the effect of cadmium toxicity: from cellular to organ level. Int J Biotechnol Res 3:17–36

    Google Scholar 

  17. Coutant A, Lebeau J, Bidon-Wagner N, Levalois C, Lectard B, Chevillard S (2006) Cadmium-induced apoptosis in lymphoblastoid cell line: involvement of caspase-dependent and -independent pathways. Biochimie 88:1815–1822

    Article  CAS  PubMed  Google Scholar 

  18. Genchi G, Sinicropi MS, Lauria G, Carocci A, Catalano A (2020) The Effects of Cadmium Toxicity. Int J Environ Res Public Health 17:1–24

  19. Bhattacharya S (2018) The role of medicinal plants and natural products in melioration of cadmium toxicity. Orient Pharm Exp Med 18:177–186

    Article  CAS  Google Scholar 

  20. Vulić J, Čanadanović-Brunet J, Ćetković G, Tumbas V, Djilas S, Četojević-Simin D, Čanadanović V (2012) Antioxidant and cell growth activities of beet root pomace extracts. J Funct Foods 4:670–678

    Article  Google Scholar 

  21. Dhananjayan I, Kathiroli S, Subramani S, Veerasamy V (2017) Ameliorating effect of betanin, a natural chromoalkaloid by modulating hepatic carbohydrate metabolic enzyme activities and glycogen content in streptozotocin - nicotinamide induced experimental rats. Biomed Pharmacother 88:1069–1079

    Article  CAS  PubMed  Google Scholar 

  22. Hadipour E, Fereidoni M, Tayarani-Najaran Z (2020) Betanin attenuates oxidative stress induced by 6-OHDA in PC12 cells via SAPK/JNK and PI3 K pathways. Neurochem Res 45:395–403

    Article  CAS  PubMed  Google Scholar 

  23. Kanner J, Harel S, Granit R (2001) Betalains–a new class of dietary cationized antioxidants. J Agric Food Chem 49:5178–5185

    Article  CAS  PubMed  Google Scholar 

  24. Tesoriere L, Butera D, Allegra M, Fazzari M, Livrea MA (2005) Distribution of betalain pigments in red blood cells after consumption of cactus pear fruits and increased resistance of the cells to ex vivo induced oxidative hemolysis in humans. J Agric Food Chem 53:1266–1270

    Article  CAS  PubMed  Google Scholar 

  25. Dominguez H, Muñoz MJG (2017) Water extraction of bioactive compounds: from plants to drug development. Elsevier Vigo, Spain

  26. Dörnenburg H, Knorr D (1996) Generation of colors and flavors in plant cell and tissue cultures. Crit Rev Plant Sci 15:141–168

    Article  Google Scholar 

  27. Georgiev VG, Weber J, Kneschke EM, Denev PN, Bley T, Pavlov AI (2010) Antioxidant activity and phenolic content of betalain extracts from intact plants and hairy root cultures of the red beetroot Beta vulgaris cv. Detroit dark red. Plant Foods Hum Nutr 65:105–111

    Article  CAS  PubMed  Google Scholar 

  28. Gliszczyńska-Swigło A, Szymusiak H, Malinowska P (2006) Betanin, the main pigment of red beet: molecular origin of its exceptionally high free radical-scavenging activity. Food Addit Contam 23:1079–1087

    Article  PubMed  Google Scholar 

  29. Alqasmi I (2023) Ameliorative potential of betanin on cigarette smoke extract-induced respiratory mucosal inflammation and oxidative stress in the adult zebrafish model. Pharmacogn Mag :09731296221145075, 0:1–10

  30. Butera D, Tesoriere L, Di Gaudio F, Bongiorno A, Allegra M, Pintaudi AM, Kohen R, Livrea MA (2002) Antioxidant activities of sicilian prickly pear (Opuntia ficus indica) fruit extracts and reducing properties of its betalains: betanin and indicaxanthin. J Agric Food Chem 50:6895–6901

    Article  CAS  PubMed  Google Scholar 

  31. Esatbeyoglu T, Wagner AE, Motafakkerazad R, Nakajima Y, Matsugo S, Rimbach G (2014) Free radical scavenging and antioxidant activity of betanin: electron spin resonance spectroscopy studies and studies in cultured cells. Food Chem Toxicol 73:119–126

    Article  CAS  PubMed  Google Scholar 

  32. Clifford T, Constantinou CM, Keane KM, West DJ, Howatson G, Stevenson EJ (2017) The plasma bioavailability of nitrate and betanin from Beta vulgaris rubra in humans. Eur J Nutr 56:1245–1254

    Article  CAS  PubMed  Google Scholar 

  33. Zhang Q, Pan J, Wang Y, Lubet R, You M (2013) Beetroot red (betanin) inhibits vinyl carbamate- and benzo(a)pyrene-induced lung tumorigenesis through apoptosis. Mol Carcinog 52:686–691

    Article  CAS  PubMed  Google Scholar 

  34. Song F, Zuo X, Zhao Y, Li Q, Tian Z, Yang Y (2019) Betanin-enriched red beet extract attenuated platelet activation and aggregation by suppressing Akt and P38 Mitogen-activated protein kinases phosphorylation. J Funct Foods 61:103491

    Article  CAS  Google Scholar 

  35. Tan D, Wang Y, Bai B, Yang X, Han J (2015) Betanin attenuates oxidative stress and inflammatory reaction in kidney of paraquat-treated rat. Food Chem Toxicol 78:141–146

    Article  CAS  PubMed  Google Scholar 

  36. Tural K, Ozden O, Bilgi Z, Kubat E, Ermutlu CS, Merhan O, Tasoglu I (2021) The protective effect of betanin and copper on spinal cord ischemia–reperfusion injury. J Spinal Cord Med : 1–7, 44:704–710 

  37. Fu Y, Shi J, Xie S-Y, Zhang T-Y, Soladoye OP, Aluko RE (2020) Red Beetroot Betalains: Perspectives on Extraction, Processing, and Potential Health Benefits. J Agric Food Chem 68:11595–11611

    Article  CAS  PubMed  Google Scholar 

  38. Han J, Ma D, Zhang M, Yang X, Tan D (2015) Natural antioxidant betanin protects rats from paraquat-induced acute lung injury interstitial pneumonia. BioMed Res Int  2015:1–9

  39. Han J, Zhang Z, Yang S, Wang J, Yang X, Tan D (2014) Betanin attenuates paraquat-induced liver toxicity through a mitochondrial pathway. Food Chem Toxicol 70:100–106

    Article  CAS  PubMed  Google Scholar 

  40. Zielińska-Przyjemska M, Olejnik A, Kostrzewa A, Łuczak M, Jagodziński PP, Baer-Dubowska W (2012) The beetroot component betanin modulates ROS production, DNA damage and apoptosis in human polymorphonuclear neutrophils. Phytother Res 26:845–852

    Article  PubMed  Google Scholar 

  41. Mukhtar-Fayyad D (2011) Cytocompatibility of new bioceramic-based materials on human fibroblast cells (MRC-5). Oral Surg Oral Med Oral Pathol Oral Radiol Endod 112:e137-142

    Article  PubMed  Google Scholar 

  42. Wang J, Li JZ, Lu AX, Zhang KF, Li BJ (2014) Anticancer effect of salidroside on A549 lung cancer cells through inhibition of oxidative stress and phospho-p38 expression. Oncol Lett 7:1159–1164

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Vancsik T, Forika G, Balogh A, Kiss E, Krenacs T (2019) Modulated electro-hyperthermia induced p53 driven apoptosis and cell cycle arrest additively support doxorubicin chemotherapy of colorectal cancer in vitro. Cancer Med 8:4292–4303

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Gaubin Y, Vaissade F, Croute F, Beau B, Soleilhavoup J, Murat J (2000) Implication of free radicals and glutathione in the mechanism of cadmium-induced expression of stress proteins in the A549 human lung cell-line. Biochim Biophys Acta 1495:4–13

    Article  CAS  PubMed  Google Scholar 

  45. Odewumi CO, Badisa VL, Le UT, Latinwo LM, Ikediobi CO, Badisa RB, Darling-Reed SF (2011) Protective effects of N-acetylcysteine against cadmium-induced damage in cultured rat normal liver cells. Int J Mol Med 27:243–248

    Article  CAS  PubMed  Google Scholar 

  46. Wang J, Zhu H, Liu X, Liu Z (2014) N-acetylcysteine protects against cadmium-induced oxidative stress in rat hepatocytes. J Vet Sci 15:485–493

    Article  PubMed Central  PubMed  Google Scholar 

  47. Chairuangkitti P, Lawanprasert S, Roytrakul S, Aueviriyavit S, Phummiratch D, Kulthong K, Chanvorachote P, Maniratanachote R (2013) Silver nanoparticles induce toxicity in A549 cells via ROS-dependent and ROS-independent pathways. Toxicol In Vitro 27:330–338

    Article  CAS  PubMed  Google Scholar 

  48. Ramazani E, Fereidoni M, Tayarani-Najaran Z (2019) Protective effects of vitamin K2 on 6-OHDA-induced apoptosis in PC12 cells through modulation bax and caspase-3 activation. Mol Biol Rep 46:5777–5783

    Article  CAS  PubMed  Google Scholar 

  49. Riccardi C, Nicoletti I (2006) Analysis of apoptosis by propidium iodide staining and flow cytometry. Nat Protoc 1:1458–1461

    Article  CAS  PubMed  Google Scholar 

  50. Shih CM, Wu JS, Ko WC, Wang LF, Wei YH, Liang HF, Chen YC, Chen CT (2003) Mitochondria-mediated caspase-independent apoptosis induced by cadmium in normal human lung cells. J Cell Biochem 89:335–347

    Article  CAS  PubMed  Google Scholar 

  51. Yu J, Sun R, Zhao Z, Wang Y (2014) Auricularia polytricha polysaccharides induce cell cycle arrest and apoptosis in human lung cancer A549 cells. Int J Biol Macromol 68:67–71

    Article  CAS  PubMed  Google Scholar 

  52. Kianfar M, Nezami A, Mehri S, Hosseinzadeh H, Hayes AW, Karimi G (2020) The protective effect of fasudil against acrylamide-induced cytotoxicity in PC12 cells. Drug Chem Toxicol 43:595–601

    Article  CAS  PubMed  Google Scholar 

  53. Låg M, Rodionov D, Ovrevik J, Bakke O, Schwarze PE, Refsnes M (2010) Cadmium-induced inflammatory responses in cells relevant for lung toxicity: Expression and release of cytokines in fibroblasts, epithelial cells and macrophages. Toxicol Lett 193:252–260

    Article  PubMed  Google Scholar 

  54. Unsal V, Dalkıran T, Çiçek M, Kölükçü E (2020) The role of natural antioxidants against reactive oxygen species produced by cadmium toxicity: a review. Adv Pharm Bull 10:184–202

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Liu J, Qu W, Kadiiska MB (2009) Role of oxidative stress in cadmium toxicity and carcinogenesis. Toxicol Appl Pharmacol 238:209–214

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Knoell DL, Wyatt TA (2021) The adverse impact of cadmium on immune function and lung host defense. Semin Cell Dev Biol 115:70–76

    Article  CAS  PubMed  Google Scholar 

  57. Person RJ, Tokar EJ, Xu Y, Orihuela R, Ngalame NN, Waalkes MP (2013) Chronic cadmium exposure in vitro induces cancer cell characteristics in human lung cells. Toxicol Appl Pharmacol 273:281–288

    Article  CAS  PubMed  Google Scholar 

  58. Kiran Kumar K, Naveen Kumar M, Patil RH, Nagesh R, Hegde SM, Kavya K, Babu R, Ramesh GT, Sharma SC (2016) Cadmium induces oxidative stress and apoptosis in lung epithelial cells. Toxicol Mech Methods 26:658–666

    Article  CAS  PubMed  Google Scholar 

  59. Odewumi C, Latinwo LM, Sinclair A, Badisa VL, Abdullah A, Badisa RB (2015) Effect of cadmium on the expression levels of interleukin-1α and interleukin-10 cytokines in human lung cells. Mol Med Rep 12:6422–6426

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Son Y-O, Wang L, Poyil P, Budhraja A, Hitron JA, Zhang Z, Lee J-C, Shi X (2012) Cadmium induces carcinogenesis in BEAS-2B cells through ROS-dependent activation of PI3K/AKT/GSK-3β/β-catenin signaling. Toxicol Appl Pharmacol 264:153–160

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Wang S, Ren X, Hu X, Zhou L, Zhang C, Zhang M (2019) Cadmium-induced apoptosis through reactive oxygen species-mediated mitochondrial oxidative stress and the JNK signaling pathway in TM3 cells, a model of mouse Leydig cells. Toxicol Appl Pharmacol 368:37–48

    Article  CAS  PubMed  Google Scholar 

  62. Wätjen W, Beyersmann D (2004) Cadmium-induced apoptosis in C6 glioma cells: influence of oxidative stress. Biometals 17:65–78

    Article  PubMed  Google Scholar 

  63. Yin L, Dai Y, Cui Z, Jiang X, Liu W, Han F, Lin A, Cao J, Liu J (2017) The regulation of cellular apoptosis by the ROS-triggered PERK/EIF2α/chop pathway plays a vital role in bisphenol A-induced male reproductive toxicity. Toxicol Appl Pharmacol 314:98–108

    Article  CAS  PubMed  Google Scholar 

  64. Kundu S, Sengupta S, Bhattacharyya A (2011) EGFR upregulates inflammatory and proliferative responses in human lung adenocarcinoma cell line (A549), induced by lower dose of cadmium chloride. Inhal Toxicol 23:339–348

    Article  CAS  PubMed  Google Scholar 

  65. Esatbeyoglu T, Wagner AE, Schini-Kerth VB, Rimbach G (2015) Betanin—A food colorant with biological activity. Mol Nutr Food Res 59:36–47

    Article  CAS  PubMed  Google Scholar 

  66. Lee C-Y, Su C-H, Tsai P-K, Yang M-L, Ho Y-C, Lee S-S, Chen C-H, Chen W-Y, Lin M-L, Chen C-J (2018) Cadmium nitrate-induced neuronal apoptosis is protected by N-acetyl-l-cysteine via reducing reactive oxygen species generation and mitochondria dysfunction. Biomed Pharmacother 108:448–456

    Article  CAS  PubMed  Google Scholar 

  67. Oh S-H, Lim S-C (2006) A rapid and transient ROS generation by cadmium triggers apoptosis via caspase-dependent pathway in HepG2 cells and this is inhibited through N-acetylcysteine-mediated catalase upregulation. Toxicol Appl Pharmacol 212:212–223

    Article  CAS  PubMed  Google Scholar 

  68. Shih CM, Ko WC, Wu JS, Wei YH, Wang LF, Chang EE, Lo TY, Cheng HH, Chen CT (2004) Mediating of caspase-independent apoptosis by cadmium through the mitochondria-ROS pathway in MRC-5 fibroblasts. J Cell Biochem 91:384–397

    Article  CAS  PubMed  Google Scholar 

  69. Zhou Y-j, Zhang S-p, Liu C-w, Cai Y-q (2009) The protection of selenium on ROS mediated-apoptosis by mitochondria dysfunction in cadmium-induced LLC-PK1 cells. Toxicol In Vitro 23:288–294

    Article  PubMed  Google Scholar 

  70. Kwon KY, Jang JH, Choi WI, Ramachandran S, Cho CH, Cagle PT (2006) Expression of apoptotic nuclei by ultrastructural terminal deoxyribonucleotidyl transferase mediated dUTP nick end labeling and detection of FasL, caspases and PARP protein molecules in cadmium induced acute alveolar cell injury. Toxicology 218:197–204

    Article  CAS  PubMed  Google Scholar 

  71. Balachandran C, Sangeetha B, Duraipandiyan V, Raj MK, Ignacimuthu S, Al-Dhabi N, Balakrishna K, Parthasarathy K, Arulmozhi N, Arasu MV (2014) A flavonoid isolated from Streptomyces sp. (ERINLG-4) induces apoptosis in human lung cancer A549 cells through p53 and cytochrome c release caspase dependant pathway. Chem Biol Interact 224:24–35

    Article  CAS  PubMed  Google Scholar 

  72. Xu P, Cai X, Zhang W, Li Y, Qiu P, Lu D, He X (2016) Flavonoids of Rosa roxburghii Tratt exhibit radioprotection and anti-apoptosis properties via the Bcl-2 (Ca 2+)/Caspase-3/PARP-1 pathway. Apoptosis 21:1125–1143

    Article  CAS  PubMed  Google Scholar 

  73. Pascal JM (2018) The comings and goings of PARP-1 in response to DNA damage. DNA Repair 71:177–182

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Kim J, Soh J (2009) Cadmium-induced apoptosis is mediated by the translocation of AIF to the nucleus in rat testes. Toxicol Lett 188:45–51

    Article  CAS  PubMed  Google Scholar 

  75. Spalm FHP, Vera MS, Dibo MJ, Simón MV, Politi LE, Rotstein NP (2019) Ceramide induces the death of retina photoreceptors through activation of parthanatos. Mol Neurobiol 56:4760–4777

    Article  Google Scholar 

  76. Ou L, Wang H, Wu Z, Wang P, Yang L, Li X, Sun K, Zhu X, Zhang R (2021) Effects of cadmium on osteoblast cell line: Exportin 1 accumulation, p-JNK activation, DNA damage and cell apoptosis. Ecotoxicol Environ Saf 208:111668

    Article  CAS  PubMed  Google Scholar 

  77. Oral B, Guney M, Demirin H, Ozguner M, Giray SG, Take G, Mungan T, Altuntas I (2006) Endometrial damage and apoptosis in rats induced by dichlorvos and ameliorating effect of antioxidant vitamins E and C. Reprod Toxicol 22:783–790

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Vice Chancellor of Research, Mashhad University of Medical Sciences (MUMS), Mashhad, Iran.

Author information

Authors and Affiliations

Authors

Contributions

Zahra Tayarani-Najaran designed the research study, organized and led the project, reviewing and edited. Fatemeh Rajabian wrote the manuscript, performed experiments, and collected and analyzed the data. Arezoo Rajabian wrote the manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to Zahra Tayarani-Najaran.

Ethics declarations

Competing Interests

The authors did not have any conflicts of interest to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajabian, F., Rajabian, A. & Tayarani-Najaran, Z. The Antioxidant Activity of Betanin protects MRC-5 cells Against Cadmium Induced Toxicity. Biol Trace Elem Res 201, 5183–5191 (2023). https://doi.org/10.1007/s12011-023-03662-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-023-03662-8

Keywords

Navigation