Skip to main content
Log in

Neurodevelopmental Consequences of Dietary Zinc Deficiency: A Status Report

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Zinc is a tightly regulated trace mineral element playing critical roles in growth, immunity, neurodevelopment, and synaptic and hormonal signaling. Although severe dietary zinc deficiency is relatively uncommon in the United States, dietary zinc deficiency is a substantial public health concern in low- and middle-income countries. Zinc status may be a key determinant of neurodevelopmental processes. Indeed, limited cohort studies have shown that serum zinc is lower in people diagnosed with autism spectrum disorder (ASD), attention-deficit/hyperactivity disorder (ADHD), and depression. These observations have sparked multiple studies investigating the mechanisms underlying zinc status and neurodevelopmental outcomes. Animal models of perinatal and adult dietary zinc restriction yield distinct behavioral phenotypes reminiscent of features of ASD, ADHD, and depression, including increased anxiety and immobility, repetitive behaviors, and altered social behaviors. At the cellular and molecular level, zinc has demonstrated roles in neurogenesis, regulation of cellular redox status, transcription factor trafficking, synaptogenesis, and the regulation of synaptic architecture via the Shank family of scaffolding proteins. Although mechanistic questions remain, the current evidence suggests that zinc status is important for adequate neuronal development and may be a yet overlooked factor in the pathogenesis of several psychiatric conditions. This review aims to summarize current knowledge of the role of zinc in the neurophysiology of the perinatal period, the many cellular targets of zinc in the developing brain, and the potential consequences of alterations in zinc homeostasis in early life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Willekens J, Runnels LW (2022) Impact of zinc transport mechanisms on embryonic and brain development. Nutrients 14:. https://doi.org/10.3390/nu14122526

  2. Institute of Medicine (US) Panel on micronutrients (2001) zinc - dietary reference intakes for vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc - NCBI Bookshelf

  3. Kambe T, Taylor KM, Fu D (2021) Zinc transporters and their functional integration in mammalian cells. J Biol Chem 296:100320. https://doi.org/10.1016/j.jbc.2021.100320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Maares M, Haase H (2020) A guide to human zinc absorption: general overview and recent advances of in vitro intestinal models. Nutrients 12:. https://doi.org/10.3390/nu12030762

  5. Kambe T, Hashimoto A, Fujimoto S (2014) Current understanding of ZIP and ZnT zinc transporters in human health and diseases. Cell Mol Life Sci 71:3281–3295. https://doi.org/10.1007/s00018-014-1617-0

    Article  CAS  PubMed  Google Scholar 

  6. Jackson MJ (1989) Physiology of zinc: general aspects. In: Mills CF (ed) Zinc in human biology. Springer, London, London, pp 1–14

    Google Scholar 

  7. Frederickson CJ, Suh SW, Silva D et al (2000) Importance of zinc in the central nervous system: the zinc-containing neuron. J Nutr 130:1471S-S1483. https://doi.org/10.1093/jn/130.5.1471S

    Article  CAS  PubMed  Google Scholar 

  8. Frederickson CJ, Koh J-Y, Bush AI (2005) The neurobiology of zinc in health and disease. Nat Rev Neurosci 6:449–462. https://doi.org/10.1038/nrn1671

    Article  CAS  PubMed  Google Scholar 

  9. Frederickson CJ, Moncrieff DW (1994) Zinc-containing neurons. Biol Signals 3:127–139. https://doi.org/10.1159/000109536

    Article  CAS  PubMed  Google Scholar 

  10. Rubio ME, Juiz JM (1998) Chemical anatomy of excitatory endings in the dorsal cochlear nucleus of the rat: differential synaptic distribution of aspartate aminotransferase, glutamate, and vesicular zinc. Journal of Comparative Neurology

  11. Hess SY, Peerson JM, King JC, Brown KH (2007) Use of serum zinc concentration as an indicator of population zinc status. Food Nutr Bull 28:S403–S429. https://doi.org/10.1177/15648265070283S303

    Article  PubMed  Google Scholar 

  12. Ceballos-Rasgado M, Lowe NM, Moran VH et al (2022) Toward revising dietary zinc recommendations for children aged 0 to 3 years: a systematic review and meta-analysis of zinc absorption, excretion, and requirements for growth. Nutr Rev. https://doi.org/10.1093/nutrit/nuac098

    Article  PubMed Central  Google Scholar 

  13. Hennigar SR, Lieberman HR, Fulgoni VL, McClung JP (2018) Serum zinc concentrations in the US population are related to sex, age, and time of blood draw but not dietary or supplemental zinc. J Nutr 148:1341–1351. https://doi.org/10.1093/jn/nxy105

    Article  PubMed  Google Scholar 

  14. Wood RJ (2000) Assessment of marginal zinc status in humans. J Nutr 130:1350S-S1354. https://doi.org/10.1093/jn/130.5.1350S

    Article  CAS  PubMed  Google Scholar 

  15. Gude NM, Roberts CT, Kalionis B, King RG (2004) Growth and function of the normal human placenta. Thromb Res 114:397–407. https://doi.org/10.1016/j.thromres.2004.06.038

    Article  CAS  PubMed  Google Scholar 

  16. Bax CM, Bloxam DL (1995) Two major pathways of zinc(II) acquisition by human placental syncytiotrophoblast. J Cell Physiol 164:546–554. https://doi.org/10.1002/jcp.1041640312

    Article  CAS  PubMed  Google Scholar 

  17. Widdowson EM (1974) Trace elements in foetal and early postnatal development. Proc Nutr Soc 33:275–284. https://doi.org/10.1079/pns19740050

    Article  CAS  PubMed  Google Scholar 

  18. Zlotkin SH, Cherian MG (1988) Hepatic metallothionein as a source of zinc and cysteine during the first year of life. Pediatr Res 24:326–329. https://doi.org/10.1203/00006450-198809000-00010

    Article  CAS  PubMed  Google Scholar 

  19. Klein D, Scholz P, Drasch GA et al (1991) Metallothionein, copper and zinc in fetal and neonatal human liver: changes during development. Toxicol Lett 56:61–67. https://doi.org/10.1016/0378-4274(91)90090-s

    Article  CAS  PubMed  Google Scholar 

  20. Dorea JG (2000) Zinc in human milk. Nutr Res 20:1645–1687. https://doi.org/10.1016/S0271-5317(00)00243-8

    Article  CAS  Google Scholar 

  21. King JC (2000) Determinants of maternal zinc status during pregnancy. Am J Clin Nutr 71:1334S-S1343. https://doi.org/10.1093/ajcn/71.5.1334s

    Article  CAS  PubMed  Google Scholar 

  22. Davies NT, Williams RB (1977) The effect of pregnancy and lactation on the absorption of zinc and lysine by the rat duodenum in situ. Br J Nutr 38:417–423. https://doi.org/10.1079/bjn19770106

    Article  CAS  PubMed  Google Scholar 

  23. Fung EB, Ritchie LD, Woodhouse LR et al (1997) Zinc absorption in women during pregnancy and lactation: a longitudinal study. Am J Clin Nutr 66:80–88. https://doi.org/10.1093/ajcn/66.1.80

    Article  CAS  PubMed  Google Scholar 

  24. Ackland ML, Michalczyk AA (2016) Zinc and infant nutrition. Arch Biochem Biophys 611:51–57. https://doi.org/10.1016/j.abb.2016.06.011

    Article  CAS  PubMed  Google Scholar 

  25. Caulfield LE, Zavaleta N, Shankar AH, Merialdi M (1998) Potential contribution of maternal zinc supplementation during pregnancy to maternal and child survival. Am J Clin Nutr 68:499S-508S. https://doi.org/10.1093/ajcn/68.2.499S

    Article  CAS  PubMed  Google Scholar 

  26. Foster M, Herulah UN, Prasad A et al (2015) Zinc status of vegetarians during pregnancy: a systematic review of observational studies and meta-analysis of zinc intake. Nutrients 7:4512–4525. https://doi.org/10.3390/nu7064512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. De Benedictis CA, Trame S, Rink L, Grabrucker AM (2022) Prevalence of low dietary zinc intake in women and pregnant women in Ireland. Ir J Med Sci 1–11. https://doi.org/10.1007/s11845-022-03181-w

  28. Bailey RL, West KP, Black RE (2015) The epidemiology of global micronutrient deficiencies. Ann Nutr Metab 66(Suppl 2):22–33. https://doi.org/10.1159/000371618

    Article  CAS  PubMed  Google Scholar 

  29. Sinha B, Dudeja N, Chowdhury R, et al (2022) Enteral zinc supplementation in preterm or low birth weight infants: a systematic review and meta-analysis. Pediatrics 150:. https://doi.org/10.1542/peds.2022-057092J

  30. Sandstead HH, Freeland-Graves JH (2014) Dietary phytate, zinc and hidden zinc deficiency. J Trace Elem Med Biol 28:414–417. https://doi.org/10.1016/j.jtemb.2014.08.011

    Article  CAS  PubMed  Google Scholar 

  31. Neufingerl N, Eilander A (2021) Nutrient intake and status in adults consuming plant-based diets compared to meat-eaters: a systematic review. Nutrients 14:. https://doi.org/10.3390/nu14010029

  32. Maxfield L, Shukla S, Crane JS (2022) Zinc deficiency. In: StatPearls. StatPearls Publishing, Treasure Island (FL)

  33. Kuhnert PM, Kuhnert BR, Erhard P et al (1987) The effect of smoking on placental and fetal zinc status. Am J Obstet Gynecol 157:1241–1246. https://doi.org/10.1016/S0002-9378(87)80302-2

    Article  CAS  PubMed  Google Scholar 

  34. Ronco AM, Garrido F, Llanos MN (2006) Smoking specifically induces metallothionein-2 isoform in human placenta at term. Toxicology 223:46–53. https://doi.org/10.1016/j.tox.2006.03.002

    Article  CAS  PubMed  Google Scholar 

  35. Ronco AM, Arguello G, Suazo M, Llanos MN (2005) Increased levels of metallothionein in placenta of smokers. Toxicology 208:133–139. https://doi.org/10.1016/j.tox.2004.11.016

    Article  CAS  PubMed  Google Scholar 

  36. Ronco AM, Arguello G, Muñoz L et al (2005) Metals content in placentas from moderate cigarette consumers: correlation with newborn birth weight. Biometals 18:233–241. https://doi.org/10.1007/s10534-005-0583-2

    Article  CAS  PubMed  Google Scholar 

  37. Skalny AV, Skalnaya MG, Grabeklis AR et al (2018) Zinc deficiency as a mediator of toxic effects of alcohol abuse. Eur J Nutr 57:2313–2322. https://doi.org/10.1007/s00394-017-1584-y

    Article  CAS  PubMed  Google Scholar 

  38. Chen WJ, Berryhill EC, West JR (2001) Zinc supplementation does not attenuate alcohol-induced cerebellar Purkinje cell loss during the brain growth spurt period. Alcohol Clin Exp Res 25:600–605. https://doi.org/10.1111/j.1530-0277.2001.tb02256.x

    Article  CAS  PubMed  Google Scholar 

  39. Coyle P, Martin SA, Carey LC et al (2009) Ethanol-mediated fetal dysmorphology and its relationship to the ontogeny of maternal liver metallothionein. Alcohol Clin Exp Res 33:1051–1058. https://doi.org/10.1111/j.1530-0277.2009.00926.x

    Article  CAS  PubMed  Google Scholar 

  40. Keen CL, Taubeneck MW, Daston GP et al (1993) Primary and secondary zinc deficiency as factors underlying abnormal CNS development. Ann N Y Acad Sci 678:37–47. https://doi.org/10.1111/j.1749-6632.1993.tb26108.x

    Article  CAS  PubMed  Google Scholar 

  41. Coyle P, Tran N, Fung JNT et al (2009) Maternal dietary zinc supplementation prevents aberrant behaviour in an object recognition task in mice offspring exposed to LPS in early pregnancy. Behav Brain Res 197:210–218. https://doi.org/10.1016/j.bbr.2008.08.022

    Article  CAS  PubMed  Google Scholar 

  42. Kirsten TB, Queiroz-Hazarbassanov N, Bernardi MM, Felicio LF (2015) Prenatal zinc prevents communication impairments and BDNF disturbance in a rat model of autism induced by prenatal lipopolysaccharide exposure. Life Sci 130:12–17. https://doi.org/10.1016/j.lfs.2015.02.027

    Article  CAS  PubMed  Google Scholar 

  43. Kienholz EW, Turk DE, Sunde ML, Hoekstra WG (1961) Effects of zinc deficiency in the diets of hens’. J Nutr 75:211–221. https://doi.org/10.1093/jn/75.2.211

    Article  CAS  PubMed  Google Scholar 

  44. Geiser J, Venken KJT, De Lisle RC, Andrews GK (2012) A mouse model of acrodermatitis enteropathica: loss of intestine zinc transporter ZIP4 (Slc39a4) disrupts the stem cell niche and intestine integrity. PLoS Genet 8:1002766. https://doi.org/10.1371/journal.pgen.1002766

    Article  CAS  Google Scholar 

  45. Prasad AS, Halsted JA, Nadimi M (1961) Syndrome of iron deficiency anemia, hepatosplenomegaly, hypogonadism, dwarfism and geophagia. Am J Med 31:532–546. https://doi.org/10.1016/0002-9343(61)90137-1

    Article  CAS  PubMed  Google Scholar 

  46. Sandstead HH, Prasad AS, Schulert AR et al (1967) Human zinc deficiency, endocrine manifestations and response to treatment. Am J Clin Nutr 20:422–442. https://doi.org/10.1093/ajcn/20.5.422

    Article  CAS  PubMed  Google Scholar 

  47. Caggiano V, Schnitzler R, Strauss W et al (1969) Zinc deficiency in a patient with retarded growth, hypogonadism, hypogammaglobulinemia and chronic infection. Am J Med Sci 257:305–319. https://doi.org/10.1097/00000441-196905000-00003

    Article  CAS  PubMed  Google Scholar 

  48. Prasad AS (2013) Discovery of human zinc deficiency: its impact on human health and disease. Adv Nutr 4:176–190. https://doi.org/10.3945/an.112.003210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Jagadeesan S, Kaliyadan F (2022) Acrodermatitis enteropathica. In: StatPearls. StatPearls Publishing, Treasure Island (FL)

  50. Küry S, Kharfi M, Blouin E, et al (2016) Clinical utility gene card for: acrodermatitis enteropathica - update 2015. Eur J Hum Genet 24:. https://doi.org/10.1038/ejhg.2015.203

  51. Kharfi M, El Fékih N, Aounallah-Skhiri H et al (2010) Acrodermatitis enteropathica: a review of 29 Tunisian cases. Int J Dermatol 49:1038–1044. https://doi.org/10.1111/j.1365-4632.2010.04566.x

    Article  CAS  PubMed  Google Scholar 

  52. Ohlsson A (1981) Acrodermatitis enteropathica reversibility of cerebral atrophy with zinc therapy. Acta Paediatr Scand 70:269–273. https://doi.org/10.1111/j.1651-2227.1981.tb05556.x

    Article  CAS  PubMed  Google Scholar 

  53. Chowanadisai W, Lönnerdal B, Kelleher SL (2006) Identification of a mutation in SLC30A2 (ZnT-2) in women with low milk zinc concentration that results in transient neonatal zinc deficiency. J Biol Chem 281:39699–39707. https://doi.org/10.1074/jbc.M605821200

    Article  CAS  PubMed  Google Scholar 

  54. Golan Y, Kambe T, Assaraf YG (2017) The role of the zinc transporter SLC30A2/ZnT2 in transient neonatal zinc deficiency. Metallomics 9:1352–1366. https://doi.org/10.1039/c7mt00162b

    Article  CAS  PubMed  Google Scholar 

  55. do Rosario MC, Bey GR, Nmezi B, et al (2022) Variants in the zinc transporter TMEM163 cause a hypomyelinating leukodystrophy. Brain. https://doi.org/10.1093/brain/awac295

    Article  PubMed  Google Scholar 

  56. Carrera N, Arrojo M, Sanjuán J et al (2012) Association study of nonsynonymous single nucleotide polymorphisms in schizophrenia. Biol Psychiatry 71:169–177. https://doi.org/10.1016/j.biopsych.2011.09.032

    Article  CAS  PubMed  Google Scholar 

  57. Baum AE, Hamshere M, Green E et al (2008) Meta-analysis of two genome-wide association studies of bipolar disorder reveals important points of agreement. Mol Psychiatry 13:466–467. https://doi.org/10.1038/mp.2008.16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ollila HM, Soronen P, Silander K et al (2009) Findings from bipolar disorder genome-wide association studies replicate in a Finnish bipolar family-cohort. Mol Psychiatry 14:351–353. https://doi.org/10.1038/mp.2008.122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Amani R, Saeidi S, Nazari Z, Nematpour S (2010) Correlation between dietary zinc intakes and its serum levels with depression scales in young female students. Biol Trace Elem Res 137:150–158. https://doi.org/10.1007/s12011-009-8572-x

    Article  CAS  PubMed  Google Scholar 

  60. Siwek M, Dudek D, Schlegel-Zawadzka M et al (2010) Serum zinc level in depressed patients during zinc supplementation of imipramine treatment. J Affect Disord 126:447–452. https://doi.org/10.1016/j.jad.2010.04.024

    Article  CAS  PubMed  Google Scholar 

  61. Maes M, D’Haese PC, Scharpé S et al (1994) Hypozincemia in depression. J Affect Disord 31:135–140. https://doi.org/10.1016/0165-0327(94)90117-1

    Article  CAS  PubMed  Google Scholar 

  62. Alghadir AH, Gabr SA, Al-Eisa E (2016) Effects of physical activity on trace elements and depression related biomarkers in children and adolescents. Biol Trace Elem Res 172:299–306. https://doi.org/10.1007/s12011-015-0601-3

    Article  CAS  PubMed  Google Scholar 

  63. Swardfager W, Herrmann N, Mazereeuw G et al (2013) Zinc in depression: a meta-analysis. Biol Psychiatry 74:872–878. https://doi.org/10.1016/j.biopsych.2013.05.008

    Article  CAS  PubMed  Google Scholar 

  64. Millett CE, Mukherjee D, Reider A et al (2017) Peripheral zinc and neopterin concentrations are associated with mood severity in bipolar disorder in a gender-specific manner. Psychiatry Res 255:52–58. https://doi.org/10.1016/j.psychres.2017.05.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Szewczyk B, Kubera M, Nowak G (2011) The role of zinc in neurodegenerative inflammatory pathways in depression. Prog Neuropsychopharmacol Biol Psychiatry 35:693–701. https://doi.org/10.1016/j.pnpbp.2010.02.010

    Article  CAS  PubMed  Google Scholar 

  66. Takeda A, Tamano H (2009) Insight into zinc signaling from dietary zinc deficiency. Brain Res Rev 62:33–44. https://doi.org/10.1016/j.brainresrev.2009.09.003

    Article  CAS  PubMed  Google Scholar 

  67. Takeda A, Tamano H, Kan F et al (2008) Enhancement of social isolation-induced aggressive behavior of young mice by zinc deficiency. Life Sci 82:909–914. https://doi.org/10.1016/j.lfs.2008.02.005

    Article  CAS  PubMed  Google Scholar 

  68. Hanson ND, Owens MJ, Nemeroff CB (2011) Depression, antidepressants, and neurogenesis: a critical reappraisal. Neuropsychopharmacology 36:2589–2602. https://doi.org/10.1038/npp.2011.220

    Article  PubMed  PubMed Central  Google Scholar 

  69. Lichtenstein P, Carlström E, Råstam M et al (2010) The genetics of autism spectrum disorders and related neuropsychiatric disorders in childhood. Am J Psychiatry 167:1357–1363. https://doi.org/10.1176/appi.ajp.2010.10020223

    Article  PubMed  Google Scholar 

  70. Faraone SV, Banaschewski T, Coghill D et al (2021) The World Federation of ADHD International Consensus Statement: 208 evidence-based conclusions about the disorder. Neurosci Biobehav Rev 128:789–818. https://doi.org/10.1016/j.neubiorev.2021.01.022

    Article  PubMed  PubMed Central  Google Scholar 

  71. Yasuda H, Yoshida K, Yasuda Y, Tsutsui T (2011) Infantile zinc deficiency: association with autism spectrum disorders. Sci Rep 1:129. https://doi.org/10.1038/srep00129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Arora M, Reichenberg A, Willfors C et al (2017) Fetal and postnatal metal dysregulation in autism. Nat Commun 8:15493. https://doi.org/10.1038/ncomms15493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Naisbitt S, Kim E, Tu JC et al (1999) Shank, a novel family of postsynaptic density proteins that binds to the NMDA receptor/PSD-95/GKAP complex and cortactin. Neuron 23:569–582. https://doi.org/10.1016/s0896-6273(00)80809-0

    Article  CAS  PubMed  Google Scholar 

  74. Phelan K, Rogers RC (1993) Phelan-McDermid syndrome. In: Adam MP, Ardinger HH, Pagon RA, et al (eds) GeneReviews®. University of Washington, Seattle, Seattle (WA)

  75. Phelan K, McDermid HE (2012) The 22q13.3 deletion syndrome (Phelan-McDermid syndrome). Mol Syndromol 2:186–201. 000334260

  76. Betancur C, Buxbaum JD (2013) SHANK3 haploinsufficiency: a “common” but underdiagnosed highly penetrant monogenic cause of autism spectrum disorders. Mol Autism 4:17. https://doi.org/10.1186/2040-2392-4-17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Leblond CS, Heinrich J, Delorme R et al (2012) Genetic and functional analyses of SHANK2 mutations suggest a multiple hit model of autism spectrum disorders. PLoS Genet 8:1002521. https://doi.org/10.1371/journal.pgen.1002521

    Article  CAS  Google Scholar 

  78. Caumes R, Smol T, Thuillier C et al (2020) Phenotypic spectrum of SHANK2-related neurodevelopmental disorder. Eur J Med Genet 63:104072. https://doi.org/10.1016/j.ejmg.2020.104072

    Article  PubMed  Google Scholar 

  79. Yang R, Zhang Y, Gao W et al (2019) Blood levels of trace elements in children with attention-deficit hyperactivity disorder: results from a case-control study. Biol Trace Elem Res 187:376–382. https://doi.org/10.1007/s12011-018-1408-9

    Article  CAS  PubMed  Google Scholar 

  80. Bekaroğlu M, Aslan Y, Gedik Y et al (1996) Relationships between serum free fatty acids and zinc, and attention deficit hyperactivity disorder: a research note. J Child Psychol Psychiatry 37:225–227. https://doi.org/10.1111/j.1469-7610.1996.tb01395.x

    Article  PubMed  Google Scholar 

  81. Kiddie JY, Weiss MD, Kitts DD, et al (2010) Nutritional status of children with attention deficit hyperactivity disorder: a pilot study. Int J Pediatr 2010:767318. https://doi.org/10.1155/2010/767318

  82. Sun G-X, Wang B-H, Zhang Y-F (2015) Relationship between serum zinc levels and attention deficit hyperactivity disorder in children. Zhongguo Dang Dai Er Ke Za Zhi 17:980–983. https://doi.org/10.7499/j.issn.1008-8830.2015.09.019

    Article  CAS  PubMed  Google Scholar 

  83. Salehi B, Mohammadbeigi A, Sheykholeslam H et al (2016) Omega-3 and zinc supplementation as complementary therapies in children with attention-deficit/hyperactivity disorder. J Res Pharm Pract 5:22–26. https://doi.org/10.4103/2279-042X.176561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Viktorinova A, Ursinyova M, Trebaticka J et al (2016) Changed plasma levels of zinc and copper to zinc ratio and their possible associations with parent- and teacher-rated symptoms in children with attention-deficit hyperactivity disorder. Biol Trace Elem Res 169:1–7. https://doi.org/10.1007/s12011-015-0395-3

    Article  CAS  PubMed  Google Scholar 

  85. Scassellati C, Bonvicini C, Faraone SV, Gennarelli M (2012) Biomarkers and attention-deficit/hyperactivity disorder: a systematic review and meta-analyses. J Am Acad Child Adolesc Psychiatry 51:1003-1019.e20. https://doi.org/10.1016/j.jaac.2012.08.015

    Article  PubMed  Google Scholar 

  86. Arnold LE, Bozzolo H, Hollway J et al (2005) Serum zinc correlates with parent- and teacher- rated inattention in children with attention-deficit/hyperactivity disorder. J Child Adolesc Psychopharmacol 15:628–636. https://doi.org/10.1089/cap.2005.15.628

    Article  PubMed  Google Scholar 

  87. Villagomez A, Ramtekkar U (2014) Iron, magnesium, vitamin D, and zinc deficiencies in children presenting with symptoms of attention-deficit/hyperactivity disorder. Children (Basel) 1:261–279. https://doi.org/10.3390/children1030261

    Article  PubMed  Google Scholar 

  88. Ranjan S, Nasser JA (2015) Nutritional status of individuals with autism spectrum disorders: do we know enough? Adv Nutr 6:397–407. https://doi.org/10.3945/an.114.007914

    Article  PubMed  PubMed Central  Google Scholar 

  89. Akhondzadeh S, Mohammadi M-R, Khademi M (2004) Zinc sulfate as an adjunct to methylphenidate for the treatment of attention deficit hyperactivity disorder in children: a double blind and randomized trial [ISRCTN64132371]. BMC Psychiatry 4:9. https://doi.org/10.1186/1471-244X-4-9

    Article  PubMed  PubMed Central  Google Scholar 

  90. Noorazar SG, Malek A, Aghaei SM et al (2020) The efficacy of zinc augmentation in children with attention deficit hyperactivity disorder under treatment with methylphenidate: a randomized controlled trial. Asian J Psychiatr 48:101868. https://doi.org/10.1016/j.ajp.2019.101868

    Article  PubMed  Google Scholar 

  91. Safavi SM, Sheikholeslam R, Naghavi M et al (2007) Zinc status of Iranian preschool children. Food Nutr Bull 28:230–235. https://doi.org/10.1177/156482650702800212

    Article  PubMed  Google Scholar 

  92. Granero R, Pardo-Garrido A, Carpio-Toro IL, et al (2021) The role of iron and zinc in the treatment of ADHD among children and adolescents: a systematic review of randomized clinical trials. Nutrients 13:. https://doi.org/10.3390/nu13114059

  93. Robberecht H, Verlaet AAJ, Breynaert A, et al (2020) Magnesium, iron, zinc, copper and selenium status in attention-deficit/hyperactivity disorder (ADHD). Molecules 25:. https://doi.org/10.3390/molecules25194440

  94. Oteiza PI, Cuellar S, Lönnerdal B et al (1990) Influence of maternal dietary zinc intake on in vitro tubulin polymerization in fetal rat brain. Teratology 41:97–104. https://doi.org/10.1002/tera.1420410110

    Article  CAS  PubMed  Google Scholar 

  95. Chowanadisai W, Kelleher SL, Lönnerdal B (2005) Maternal zinc deficiency reduces NMDA receptor expression in neonatal rat brain, which persists into early adulthood. J Neurochem 94:510–519. https://doi.org/10.1111/j.1471-4159.2005.03246.x

    Article  CAS  PubMed  Google Scholar 

  96. Takeda A, Takefuta S, Okada S, Oku N (2000) Relationship between brain zinc and transient learning impairment of adult rats fed zinc-deficient diet. Brain Res 859:352–357. https://doi.org/10.1016/s0006-8993(00)02027-8

    Article  CAS  PubMed  Google Scholar 

  97. Nuttall JR, Supasai S, Kha J et al (2015) Gestational marginal zinc deficiency impaired fetal neural progenitor cell proliferation by disrupting the ERK1/2 signaling pathway. J Nutr Biochem 26:1116–1123. https://doi.org/10.1016/j.jnutbio.2015.05.007

    Article  CAS  PubMed  Google Scholar 

  98. Adamo AM, Liu X, Mathieu P et al (2019) Early developmental marginal zinc deficiency affects neurogenesis decreasing neuronal number and altering neuronal specification in the adult rat brain. Front Cell Neurosci 13:62. https://doi.org/10.3389/fncel.2019.00062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Xu H, Gao H-L, Zheng W et al (2011) Lactational zinc deficiency-induced hippocampal neuronal apoptosis by a BDNF-independent TrkB signaling pathway. Hippocampus 21:495–501. https://doi.org/10.1002/hipo.20767

    Article  CAS  PubMed  Google Scholar 

  100. Yu X, Jin L, Zhang X, Yu X (2013) Effects of maternal mild zinc deficiency and zinc supplementation in offspring on spatial memory and hippocampal neuronal ultrastructural changes. Nutrition 29:457–461. https://doi.org/10.1016/j.nut.2012.09.002

    Article  CAS  PubMed  Google Scholar 

  101. Grabrucker S, Jannetti L, Eckert M et al (2014) Zinc deficiency dysregulates the synaptic ProSAP/Shank scaffold and might contribute to autism spectrum disorders. Brain 137:137–152. https://doi.org/10.1093/brain/awt303

    Article  PubMed  Google Scholar 

  102. Grabrucker S, Boeckers TM, Grabrucker AM (2016) Gender dependent evaluation of autism like behavior in mice exposed to prenatal zinc deficiency. Front Behav Neurosci 10:37. https://doi.org/10.3389/fnbeh.2016.00037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Halas ES, Sandstead HH (1975) Some effects of prenatal zinc deficiency on behavior of the adult rat. Pediatr Res 9:94–97. https://doi.org/10.1203/00006450-197502000-00007

    Article  CAS  PubMed  Google Scholar 

  104. Peters DP (1978) Effects of prenatal nutritional deficiency on affiliation and aggression in rats. Physiol Behav 20:359–362. https://doi.org/10.1016/0031-9384(78)90313-x

    Article  CAS  PubMed  Google Scholar 

  105. Golub MS, Gershwin ME, Vijayan VK (1983) Passive avoidance performance of mice fed marginally or severely zinc deficient diets during post-embryonic brain development. Physiol Behav 30:409–413. https://doi.org/10.1016/0031-9384(83)90145-2

    Article  CAS  PubMed  Google Scholar 

  106. Halas ES, Hunt CD, Eberhardt MJ (1986) Learning and memory disabilities in young adult rats from mildly zinc deficient dams. Physiol Behav 37:451–458. https://doi.org/10.1016/0031-9384(86)90205-2

    Article  CAS  PubMed  Google Scholar 

  107. Tahmasebi Boroujeni S, Naghdi N, Shahbazi M et al (2009) The effect of severe zinc deficiency and zinc supplement on spatial learning and memory. Biol Trace Elem Res 130:48–61. https://doi.org/10.1007/s12011-008-8312-7

    Article  CAS  PubMed  Google Scholar 

  108. Halas ES, Eberhardt MJ, Diers MA, Sandstead HH (1983) Learning and memory impairment in adult rats due to severe zinc deficiency during lactation. Physiol Behav 30:371–381. https://doi.org/10.1016/0031-9384(83)90140-3

    Article  CAS  PubMed  Google Scholar 

  109. Gao H-L, Zheng W, Xin N et al (2009) Zinc deficiency reduces neurogenesis accompanied by neuronal apoptosis through caspase-dependent and -independent signaling pathways. Neurotox Res 16:416–425. https://doi.org/10.1007/s12640-009-9072-7

    Article  CAS  PubMed  Google Scholar 

  110. Gao H-L, Xu H, Xin N et al (2011) Disruption of the CaMKII/CREB signaling is associated with zinc deficiency-induced learning and memory impairments. Neurotox Res 19:584–591. https://doi.org/10.1007/s12640-010-9206-y

    Article  CAS  PubMed  Google Scholar 

  111. Suh SW, Won SJ, Hamby AM et al (2009) Decreased brain zinc availability reduces hippocampal neurogenesis in mice and rats. J Cereb Blood Flow Metab 29:1579–1588. https://doi.org/10.1038/jcbfm.2009.80

    Article  CAS  PubMed  Google Scholar 

  112. Tamano H, Kan F, Kawamura M et al (2009) Behavior in the forced swim test and neurochemical changes in the hippocampus in young rats after 2-week zinc deprivation. Neurochem Int 55:536–541. https://doi.org/10.1016/j.neuint.2009.05.011

    Article  CAS  PubMed  Google Scholar 

  113. Młyniec K, Davies CL, Budziszewska B et al (2012) Time course of zinc deprivation-induced alterations of mice behavior in the forced swim test. Pharmacol Rep 64:567–575. https://doi.org/10.1016/s1734-1140(12)70852-6

    Article  PubMed  Google Scholar 

  114. Keller KA, Chu Y, Grider A, Coffield JA (2000) Supplementation with L-histidine during dietary zinc repletion improves short-term memory in zinc-restricted young adult male rats. J Nutr 130:1633–1640. https://doi.org/10.1093/jn/130.6.1633

    Article  CAS  PubMed  Google Scholar 

  115. Whittle N, Lubec G, Singewald N (2009) Zinc deficiency induces enhanced depression-like behaviour and altered limbic activation reversed by antidepressant treatment in mice. Amino Acids 36:147–158. https://doi.org/10.1007/s00726-008-0195-6

    Article  CAS  PubMed  Google Scholar 

  116. Corniola RS, Tassabehji NM, Hare J et al (2008) Zinc deficiency impairs neuronal precursor cell proliferation and induces apoptosis via p53-mediated mechanisms. Brain Res 1237:52–61. https://doi.org/10.1016/j.brainres.2008.08.040

    Article  CAS  PubMed  Google Scholar 

  117. Gower-Winter SD, Corniola RS, Morgan TJ, Levenson CW (2013) Zinc deficiency regulates hippocampal gene expression and impairs neuronal differentiation. Nutr Neurosci 16:174–182. https://doi.org/10.1179/1476830512Y.0000000043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Keller KA, Grider A, Coffield JA (2001) Age-dependent influence of dietary zinc restriction on short-term memory in male rats. Physiol Behav 72:339–348. https://doi.org/10.1016/s0031-9384(00)00421-2

    Article  CAS  PubMed  Google Scholar 

  119. Aimo L, Mackenzie GG, Keenan AH, Oteiza PI (2010) Gestational zinc deficiency affects the regulation of transcription factors AP-1, NF-κB and NFAT in fetal brain. J Nutr Biochem 21:1069–1075. https://doi.org/10.1016/j.jnutbio.2009.09.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Dvergsten CL, Fosmire GJ, Ollerich DA, Sandstead HH (1983) Alterations in the postnatal development of the cerebellar cortex due to zinc deficiency. I. Impaired acquisition of granule cells. Brain Res 271:217–226. https://doi.org/10.1016/0006-8993(83)90284-6

    Article  CAS  PubMed  Google Scholar 

  121. Dvergsten CL, Fosmire GJ, Ollerich DA, Sandstead HH (1984) Alterations in the postnatal development of the cerebellar cortex due to zinc deficiency. II. Impaired maturation of Purkinje cells. Brain Res 318:11–20. https://doi.org/10.1016/0165-3806(84)90057-9

    Article  CAS  PubMed  Google Scholar 

  122. Dvergsten CL, Johnson LA, Sandstead HH (1984) Alterations in the postnatal development of the cerebellar cortex due to zinc deficiency. III. Impaired dendritic differentiation of basket and stellate cells. Brain Res 318:21–26. https://doi.org/10.1016/0165-3806(84)90058-0

    Article  CAS  PubMed  Google Scholar 

  123. Li H, Zhang J, Niswander L (2018) Zinc deficiency causes neural tube defects through attenuation of p53 ubiquitylation. Development 145:. https://doi.org/10.1242/dev.169797

  124. Dreosti IE, Manuel SJ, Buckley RA et al (1981) The effect of late prenatal and/or early postnatal zinc deficiency on the development and some biochemical aspects of the cerebellum and hippocampus in rats. Life Sci 28:2133–2141. https://doi.org/10.1016/0024-3205(81)90620-2

    Article  CAS  PubMed  Google Scholar 

  125. Prohaska JR, Luecke RW, Jasinski R (1974) Effect of zinc deficiency from day 18 of gestation and-or during lactation on the development of some rat brain enzymes. J Nutr 104:1525–1531. https://doi.org/10.1093/jn/104.11.1525

    Article  CAS  PubMed  Google Scholar 

  126. Liu H, Oteiza PI, Gershwin ME et al (1992) Effects of maternal marginal zinc deficiency on myelin protein profiles in the suckling rat and infant rhesus monkey. Biol Trace Elem Res 34:55–66. https://doi.org/10.1007/BF02783898

    Article  CAS  PubMed  Google Scholar 

  127. Levenson CW (2003) Zinc regulation of food intake: new insights on the role of neuropeptide Y. Nutr Rev 61:247–249. https://doi.org/10.1301/nr.2003.jul.247-249

    Article  PubMed  Google Scholar 

  128. Supasai S, Adamo AM, Mathieu P et al (2021) Gestational zinc deficiency impairs brain astrogliogenesis in rats through multistep alterations of the JAK/STAT3 signaling pathway. Redox Biol 44:102017. https://doi.org/10.1016/j.redox.2021.102017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Dufner-Beattie J, Huang ZL, Geiser J et al (2006) Mouse ZIP1 and ZIP3 genes together are essential for adaptation to dietary zinc deficiency during pregnancy. Genesis 44:239–251. https://doi.org/10.1002/dvg.20211

    Article  CAS  PubMed  Google Scholar 

  130. Crawley JN (2007) Mouse behavioral assays relevant to the symptoms of autism. Brain Pathol 17:448–459. https://doi.org/10.1111/j.1750-3639.2007.00096.x

    Article  PubMed  PubMed Central  Google Scholar 

  131. Jiang H-Y, Xu L-L, Shao L et al (2016) Maternal infection during pregnancy and risk of autism spectrum disorders: a systematic review and meta-analysis. Brain Behav Immun 58:165–172. https://doi.org/10.1016/j.bbi.2016.06.005

    Article  PubMed  Google Scholar 

  132. Młyniec K, Nowak G (2012) Zinc deficiency induces behavioral alterations in the tail suspension test in mice. Effect of antidepressants Pharmacol Rep 64:249–255

    Article  PubMed  Google Scholar 

  133. Tassabehji NM, Corniola RS, Alshingiti A, Levenson CW (2008) Zinc deficiency induces depression-like symptoms in adult rats. Physiol Behav 95:365–369. https://doi.org/10.1016/j.physbeh.2008.06.017

    Article  CAS  PubMed  Google Scholar 

  134. Aimo L, Cherr GN, Oteiza PI (2010) Low extracellular zinc increases neuronal oxidant production through nadph oxidase and nitric oxide synthase activation. Free Radic Biol Med 48:1577–1587. https://doi.org/10.1016/j.freeradbiomed.2010.02.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Supasai S, Aimo L, Adamo AM et al (2017) Zinc deficiency affects the STAT1/3 signaling pathways in part through redox-mediated mechanisms. Redox Biol 11:469–481. https://doi.org/10.1016/j.redox.2016.12.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Anderson CT, Radford RJ, Zastrow ML et al (2015) Modulation of extrasynaptic NMDA receptors by synaptic and tonic zinc. Proc Natl Acad Sci USA 112:E2705–E2714. https://doi.org/10.1073/pnas.1503348112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Paoletti P, Ascher P, Neyton J (1997) High-affinity zinc inhibition of NMDA NR1-NR2A receptors. J Neurosci 17:5711–5725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Noh KM, Koh JY (2000) Induction and activation by zinc of NADPH oxidase in cultured cortical neurons and astrocytes. J Neurosci 20:RC111. https://doi.org/10.1523/JNEUROSCI.20-23-j0001.2000

  139. Izumi Y, Tokuda K, Zorumski CF (2008) Long-term potentiation inhibition by low-level N-methyl-D-aspartate receptor activation involves calcineurin, nitric oxide, and p38 mitogen-activated protein kinase. Hippocampus 18:258–265. https://doi.org/10.1002/hipo.20383

    Article  CAS  PubMed  Google Scholar 

  140. Zago MP, Mackenzie GG, Adamo AM et al (2005) Differential modulation of MAP kinases by zinc deficiency in IMR-32 cells: role of H(2)O(2). Antioxid Redox Signal 7:1773–1782. https://doi.org/10.1089/ars.2005.7.1773

    Article  CAS  PubMed  Google Scholar 

  141. Tibbles LA, Woodgett JR (1999) The stress-activated protein kinase pathways. Cell Mol Life Sci 55:1230–1254. https://doi.org/10.1007/s000180050369

    Article  CAS  PubMed  Google Scholar 

  142. Shaulian E, Karin M (2002) AP-1 as a regulator of cell life and death. Nat Cell Biol 4:E131–E136. https://doi.org/10.1038/ncb0502-e131

    Article  CAS  PubMed  Google Scholar 

  143. Raivich G, Behrens A (2006) Role of the AP-1 transcription factor c-Jun in developing, adult and injured brain. Prog Neurobiol 78:347–363. https://doi.org/10.1016/j.pneurobio.2006.03.006

    Article  CAS  PubMed  Google Scholar 

  144. Adamo AM, Zago MP, Mackenzie GG et al (2010) The role of zinc in the modulation of neuronal proliferation and apoptosis. Neurotox Res 17:1–14. https://doi.org/10.1007/s12640-009-9067-4

    Article  CAS  PubMed  Google Scholar 

  145. Mackenzie GG, Salvador GA, Romero C et al (2011) A deficit in zinc availability can cause alterations in tubulin thiol redox status in cultured neurons and in the developing fetal rat brain. Free Radic Biol Med 51:480–489. https://doi.org/10.1016/j.freeradbiomed.2011.04.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Mackenzie GG, Zago MP, Keen CL, Oteiza PI (2002) Low intracellular zinc impairs the translocation of activated NF-kappa B to the nuclei in human neuroblastoma IMR-32 cells. J Biol Chem 277:34610–34617. https://doi.org/10.1074/jbc.M203616200

    Article  CAS  PubMed  Google Scholar 

  147. Sun X-Y, Wei Y-P, Xiong Y et al (2012) Synaptic released zinc promotes tau hyperphosphorylation by inhibition of protein phosphatase 2A (PP2A). J Biol Chem 287:11174–11182. https://doi.org/10.1074/jbc.M111.309070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Xiong Y, Luo D-J, Wang X-L et al (2015) Zinc binds to and directly inhibits protein phosphatase 2A in vitro. Neurosci Bull 31:331–337. https://doi.org/10.1007/s12264-014-1519-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Klesse LJ, Parada LF (1999) Trks: Signal transduction and intracellular pathways. Microscopy Research and Technique

  150. Nuttall JR, Oteiza PI (2012) Zinc and the ERK kinases in the developing brain. Neurotox Res 21:128–141. https://doi.org/10.1007/s12640-011-9291-6

    Article  CAS  PubMed  Google Scholar 

  151. Lu Z, Xu S (2006) ERK1/2 MAP kinases in cell survival and apoptosis. IUBMB Life 58:621–631. https://doi.org/10.1080/15216540600957438

    Article  CAS  PubMed  Google Scholar 

  152. Graham V, Khudyakov J, Ellis P, Pevny L (2003) SOX2 functions to maintain neural progenitor identity. Neuron 39:749–765. https://doi.org/10.1016/s0896-6273(03)00497-5

    Article  CAS  PubMed  Google Scholar 

  153. Sansom SN, Griffiths DS, Faedo A et al (2009) The level of the transcription factor Pax6 is essential for controlling the balance between neural stem cell self-renewal and neurogenesis. PLoS Genet 5:1000511. https://doi.org/10.1371/journal.pgen.1000511

    Article  CAS  Google Scholar 

  154. Hodge RD, Nelson BR, Kahoud RJ et al (2012) Tbr2 is essential for hippocampal lineage progression from neural stem cells to intermediate progenitors and neurons. J Neurosci 32:6275–6287. https://doi.org/10.1523/JNEUROSCI.0532-12.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Li Y, Maret W (2009) Transient fluctuations of intracellular zinc ions in cell proliferation. Exp Cell Res 315:2463–2470. https://doi.org/10.1016/j.yexcr.2009.05.016

    Article  CAS  PubMed  Google Scholar 

  156. Wu FY, Wu CW (1987) Zinc in DNA replication and transcription. Annu Rev Nutr 7:251–272. https://doi.org/10.1146/annurev.nu.07.070187.001343

    Article  CAS  PubMed  Google Scholar 

  157. MacDonald RS (2000) The role of zinc in growth and cell proliferation. J Nutr 130:1500S-S1508. https://doi.org/10.1093/jn/130.5.1500S

    Article  CAS  PubMed  Google Scholar 

  158. Andreae LC (2018) Adult neurogenesis in humans: dogma overturned, again and again? Sci Transl Med 10:3893. https://doi.org/10.1126/scitranslmed.aat3893

    Article  Google Scholar 

  159. McAllister BB, Dyck RH (2017) Zinc transporter 3 (ZnT3) and vesicular zinc in central nervous system function. Neurosci Biobehav Rev 80:329–350. https://doi.org/10.1016/j.neubiorev.2017.06.006

    Article  CAS  PubMed  Google Scholar 

  160. Krall RF, Tzounopoulos T, Aizenman E (2021) The function and regulation of zinc in the brain. Neuroscience 457:235–258. https://doi.org/10.1016/j.neuroscience.2021.01.010

    Article  CAS  PubMed  Google Scholar 

  161. Vyas Y, Montgomery JM (2016) The role of postsynaptic density proteins in neural degeneration and regeneration. Neural Regen Res 11:906–907. https://doi.org/10.4103/1673-5374.184481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Grabrucker AM, Knight MJ, Proepper C et al (2011) Concerted action of zinc and ProSAP/Shank in synaptogenesis and synapse maturation. EMBO J 30:569–581. https://doi.org/10.1038/emboj.2010.336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Jan H-H, Chen I-T, Tsai Y-Y, Chang Y-C (2002) Structural role of zinc ions bound to postsynaptic densities. J Neurochem 83:525–534. https://doi.org/10.1046/j.1471-4159.2002.01093.x

    Article  CAS  PubMed  Google Scholar 

  164. Sheng M, Kim E (2000) The Shank family of scaffold proteins. J Cell Sci 113(Pt 11):1851–1856. https://doi.org/10.1242/jcs.113.11.1851

    Article  CAS  PubMed  Google Scholar 

  165. Raynaud F, Janossy A, Dahl J et al (2013) Shank3-Rich2 interaction regulates AMPA receptor recycling and synaptic long-term potentiation. J Neurosci 33:9699–9715. https://doi.org/10.1523/JNEUROSCI.2725-12.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Tu JC, Xiao B, Naisbitt S et al (1999) Coupling of mGluR/Homer and PSD-95 complexes by the Shank family of postsynaptic density proteins. Neuron 23:583–592. https://doi.org/10.1016/s0896-6273(00)80810-7

    Article  CAS  PubMed  Google Scholar 

  167. Uchino S, Wada H, Honda S et al (2006) Direct interaction of post-synaptic density-95/Dlg/ZO-1 domain-containing synaptic molecule Shank3 with GluR1 alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor. J Neurochem 97:1203–1214. https://doi.org/10.1111/j.1471-4159.2006.03831.x

    Article  CAS  PubMed  Google Scholar 

  168. Böckers TM, Mameza MG, Kreutz MR et al (2001) Synaptic scaffolding proteins in rat brain. Ankyrin repeats of the multidomain Shank protein family interact with the cytoskeletal protein alpha-fodrin. J Biol Chem 276:40104–40112. https://doi.org/10.1074/jbc.M102454200

    Article  CAS  PubMed  Google Scholar 

  169. Baron MK, Boeckers TM, Vaida B et al (2006) An architectural framework that may lie at the core of the postsynaptic density. Science 311:531–535. https://doi.org/10.1126/science.1118995

    Article  CAS  PubMed  Google Scholar 

  170. Boeckers TM, Liedtke T, Spilker C et al (2005) C-terminal synaptic targeting elements for postsynaptic density proteins ProSAP1/Shank2 and ProSAP2/Shank3. J Neurochem 92:519–524. https://doi.org/10.1111/j.1471-4159.2004.02910.x

    Article  CAS  PubMed  Google Scholar 

  171. Grabrucker AM, Schmeisser MJ, Schoen M, Boeckers TM (2011) Postsynaptic ProSAP/Shank scaffolds in the cross-hair of synaptopathies. Trends Cell Biol 21:594–603. https://doi.org/10.1016/j.tcb.2011.07.003

    Article  CAS  PubMed  Google Scholar 

  172. Boeckers TM, Kreutz MR, Winter C et al (1999) Proline-rich synapse-associated protein-1/cortactin binding protein 1 (ProSAP1/CortBP1) is a PDZ-domain protein highly enriched in the postsynaptic density. J Neurosci 19:6506–6518. https://doi.org/10.1523/JNEUROSCI.19-15-06506.1999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Du Y, Weed SA, Xiong WC et al (1998) Identification of a novel cortactin SH3 domain-binding protein and its localization to growth cones of cultured neurons. Mol Cell Biol 18:5838–5851. https://doi.org/10.1128/MCB.18.10.5838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Ha HTT, Leal-Ortiz S, Lalwani K et al (2018) Shank and zinc mediate an AMPA receptor subunit switch in developing neurons. Front Mol Neurosci 11:405. https://doi.org/10.3389/fnmol.2018.00405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Roussignol G, Ango F, Romorini S et al (2005) Shank expression is sufficient to induce functional dendritic spine synapses in aspiny neurons. J Neurosci 25:3560–3570. https://doi.org/10.1523/JNEUROSCI.4354-04.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Arons MH, Thynne CJ, Grabrucker AM et al (2012) Autism-associated mutations in ProSAP2/Shank3 impair synaptic transmission and neurexin-neuroligin-mediated transsynaptic signaling. J Neurosci 32:14966–14978. https://doi.org/10.1523/JNEUROSCI.2215-12.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Pérez-Clausell J, Danscher G (1985) Intravesicular localization of zinc in rat telencephalic boutons. A histochemical study Brain Res 337:91–98. https://doi.org/10.1016/0006-8993(85)91612-9

    Article  PubMed  Google Scholar 

  178. Palmiter RD, Cole TB, Quaife CJ, Findley SD (1996) ZnT-3, a putative transporter of zinc into synaptic vesicles. Proc Natl Acad Sci USA 93:14934–14939. https://doi.org/10.1073/pnas.93.25.14934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Wenzel HJ, Cole TB, Born DE et al (1997) Ultrastructural localization of zinc transporter-3 (ZnT-3) to synaptic vesicle membranes within mossy fiber boutons in the hippocampus of mouse and monkey. Proc Natl Acad Sci USA 94:12676–12681. https://doi.org/10.1073/pnas.94.23.12676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Krall RF, Moutal A, Phillips MB, et al (2020) Synaptic zinc inhibition of NMDA receptors depends on the association of GluN2A with the zinc transporter ZnT1. Sci Adv 6:. https://doi.org/10.1126/sciadv.abb1515

  181. Gottesman N, Asraf H, Bogdanovic M et al (2022) ZnT1 is a neuronal Zn2+/Ca2+ exchanger. Cell Calcium 101:102505. https://doi.org/10.1016/j.ceca.2021.102505

    Article  CAS  PubMed  Google Scholar 

  182. Bogdanovic M, Asraf H, Gottesman N et al (2022) The ZIP3 zinc transporter is localized to mossy fiber terminals and is required for kainate-induced degeneration of CA3 neurons. J Neurosci 42:2824–2834. https://doi.org/10.1523/JNEUROSCI.0908-21.2022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. De Benedictis CA, Haffke C, Hagmeyer S, et al (2021) Expression analysis of zinc transporters in nervous tissue cells reveals neuronal and synaptic localization of ZIP4. Int J Mol Sci 22:. https://doi.org/10.3390/ijms22094511

  184. Tao-Cheng J-H, Toy D, Winters CA et al (2016) Zinc stabilizes Shank3 at the postsynaptic density of hippocampal synapses. PLoS ONE 11:0153979. https://doi.org/10.1371/journal.pone.0153979

    Article  CAS  Google Scholar 

  185. Arons MH, Lee K, Thynne CJ et al (2016) Shank3 is part of a zinc-sensitive signaling system that regulates excitatory synaptic strength. J Neurosci 36:9124–9134. https://doi.org/10.1523/JNEUROSCI.0116-16.2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Zhang Y, Aizenman E, DeFranco DB, Rosenberg PA (2007) Intracellular zinc release, 12-lipoxygenase activation and MAPK dependent neuronal and oligodendroglial death. Mol Med 13:350–355. https://doi.org/10.2119/2007-00042.Zhang

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Duffney LJ, Wei J, Cheng J et al (2013) Shank3 deficiency induces NMDA receptor hypofunction via an actin-dependent mechanism. J Neurosci 33:15767–15778. https://doi.org/10.1523/JNEUROSCI.1175-13.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Wang X, Bey AL, Katz BM et al (2016) Altered mGluR5-Homer scaffolds and corticostriatal connectivity in a Shank3 complete knockout model of autism. Nat Commun 7:11459. https://doi.org/10.1038/ncomms11459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Wang X, McCoy PA, Rodriguiz RM et al (2011) Synaptic dysfunction and abnormal behaviors in mice lacking major isoforms of Shank3. Hum Mol Genet 20:3093–3108. https://doi.org/10.1093/hmg/ddr212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Bozdagi O, Sakurai T, Papapetrou D et al (2010) Haploinsufficiency of the autism-associated Shank3 gene leads to deficits in synaptic function, social interaction, and social communication. Mol Autism 1:15. https://doi.org/10.1186/2040-2392-1-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Vyas Y, Lee K, Jung Y, Montgomery JM (2020) Influence of maternal zinc supplementation on the development of autism-associated behavioural and synaptic deficits in offspring Shank3-knockout mice. Mol Brain 13:110. https://doi.org/10.1186/s13041-020-00650-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Fourie C, Vyas Y, Lee K et al (2018) Dietary zinc supplementation prevents autism related behaviors and striatal synaptic dysfunction in Shank3 Exon 13–16 mutant mice. Front Cell Neurosci 12:374. https://doi.org/10.3389/fncel.2018.00374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Mei Y, Monteiro P, Zhou Y et al (2016) Adult restoration of Shank3 expression rescues selective autistic-like phenotypes. Nature 530:481–484. https://doi.org/10.1038/nature16971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Won H, Lee H-R, Gee HY et al (2012) Autistic-like social behaviour in Shank2-mutant mice improved by restoring NMDA receptor function. Nature 486:261–265. https://doi.org/10.1038/nature11208

    Article  CAS  PubMed  Google Scholar 

  195. Gupta S, Brazier AKM, Lowe NM (2020) Zinc deficiency in low- and middle-income countries: prevalence and approaches for mitigation. J Hum Nutr Diet 33:624–643. https://doi.org/10.1111/jhn.12791

    Article  CAS  PubMed  Google Scholar 

  196. Khalighinejad P, Suh EH, Sherry AD (2023) MRI methods for imaging beta-cell function in the rodent pancreas. Methods Mol Biol 2592:101–111. https://doi.org/10.1007/978-1-0716-2807-2_7

    Article  CAS  PubMed  Google Scholar 

  197. Firth G, Yu Z, Bartnicka JJ, et al (2022) Imaging zinc trafficking in vivo by positron emission tomography with zinc-62. Metallomics 14:. https://doi.org/10.1093/mtomcs/mfac076

  198. Grabrucker S, Haderspeck JC, Sauer AK et al (2017) Brain lateralization in mice is associated with zinc signaling and altered in prenatal zinc deficient mice that display features of autism spectrum disorder. Front Mol Neurosci 10:450. https://doi.org/10.3389/fnmol.2017.00450

    Article  CAS  PubMed  Google Scholar 

  199. Wang FD, Bian W, Kong LW et al (2001) Maternal zinc deficiency impairs brain nestin expression in prenatal and postnatal mice. Cell Res 11:135–141. https://doi.org/10.1038/sj.cr.7290078

    Article  CAS  PubMed  Google Scholar 

  200. Takeda A, Yamada K, Tamano H et al (2008) Hippocampal calcium dyshomeostasis and long-term potentiation in 2-week zinc deficiency. Neurochem Int 52:241–246. https://doi.org/10.1016/j.neuint.2007.06.021

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Jenna Gale for her helpful comments on the manuscript. This work was supported by National Institutes of Health grants NS043277 and NS117702 (EA). MMR is the recipient of the American Academy of Neurology Medical Student Research Scholarship (2022).

Funding

EA and DHE are supported by NIH grants NS043277 and NS117702. MMR is the recipient of the American Academy of Neurology Medical Student Research Scholarship (2022).

Author information

Authors and Affiliations

Authors

Contributions

MMR prepared and wrote the manuscript. DHE created the figures, reviewed, and edited the paper. EA reviewed and edited the paper. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Elias Aizenman.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ross, M.M., Hernandez-Espinosa, D.R. & Aizenman, E. Neurodevelopmental Consequences of Dietary Zinc Deficiency: A Status Report. Biol Trace Elem Res 201, 5616–5639 (2023). https://doi.org/10.1007/s12011-023-03630-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-023-03630-2

Keywords

Navigation