Skip to main content

Advertisement

Log in

Immunomodulation, Fish Health and Resistance to Staphylococcus aureus of Nile Tilapia (Oreochromis niloticus) Fed Diet Supplemented with Zinc Oxide Nanoparticles and Zinc Acetate

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Recently some metal-based nanoparticles have gained serious attention from aquaculture and the fish feed industry as feed supplements. Oral supplementation of zinc oxide nanoparticles (ZnO-NPs) in fish feed, replacing Zn acetate (conventionally used zinc), is suggested as a cost-effective and efficient approach. Our study assessed the response of Nile tilapia, Oreochromis niloticus, fingerlings after its diet supplemented with chemically synthesized ZnO-NPs and zinc acetate under controlled conditions. ZnO-NPs were chemically synthesized and characterized. Tilapia fingerlings with an average body weight of 09.12 ± 1.23 g were randomly distributed into five groups. An 8-week trial was set with control and four experimental groups. Basal diet (D1) was used as control, whereas D2, D3 and D4 comprising 20, 40, and 60 mgkg−1 ZnO-NPs supplementation were experimental diets. Additionally, D5 was composed of a basal diet supplemented with 40 mgkg−1 of conventionally used zinc acetate. Significant improvement (P < 0.05) was found in nanoparticles and Zn acetate supplemented groups as compared to control, while the 40 mgkg−1 Zn-NPs supplemented diet (D3) showed best performance in terms of health parameters, oxidative status and disease resistance. Antioxidant profiling was based on catalase, superoxide dismutase, glutathione’s transferase, and malondialdehyde; hematology included Hb, WBCs, RBCs, HCT MCV, MCH and MCHC; immunological parameters comprised IgM, lysozyme activity, phagocytic activity, respiratory burst activity, cholesterol, aspartate aminotransferase, alanine aminotransferase, glucose content, and total serum proteins. We report that the D3 (40 mgkg−1 ZnO-NPs supplementation) significantly (P < 0.05) improved health-related parameters as compared to the other groups. Moreover, D3 also showed significantly decreased mortality percentage when challenged by Staphylococcus aureus, while the Zn acetate supplemented diet group showed better results as compared to control. Overall results suggest the basal diet supplemented with 40 mgkg−1 ZnO-NP for enhanced health parameters, oxidative status, immune response, and disease resistance. Hence, 40mgkg−1 ZnO-NP can be recommended to formulate the practical diet of fish to boost health improvement, immunomodulation, and resistance to bacterial disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All materials and datasets in this study are available from the corresponding author on reasonable request.

Code Availability

Not applicable.

References

  1. El-Sayed AFM (2019) Tilapia culture. Academic Press

    Google Scholar 

  2. Yaqub A, Kamran M, Malkani N, Anjum MK, Faheem M, Iqbal M, Khan RU (2019) Mitochondrial COI gene based molecular identification and phylogenetic analysis in exotic fish (Oreochromis mossambicus) of Pakistan. J Animal Plant Sci 29(5):1501–1518

    CAS  Google Scholar 

  3. Aziz S, Abdullah S, Abbas K and Zia MA (2020) Effects of engineered zinc oxide nanoparticles on freshwater fish, Labeo rohita: characterization of ZnO nanoparticles, acute toxicity and oxidative stress. Pakistan Vet J 40(4)

  4. Makori AJ, Abuom PO, Kapiyo R, Anyona DN, Dida GO (2017) Effects of water physico-chemical parameters on tilapia (Oreochromis niloticus) growth in earthen ponds in Teso North Sub-County. Busia County Fisheries and Aquatic Sciences 20(1):1–10

    Google Scholar 

  5. https://www.fao.org/publications/sofa/sofa-2021/en/. Accessed 23 May 2022

  6. Abdel-Latif HM, Abdel-Tawwab M, Khafaga AF, Dawood MA (2020) Dietary origanum essential oil improved antioxidative status, immune-related genes, and resistance of common carp (Cyprinus carpio L.) to Aeromonas hydrophila infection. Fish Shellfish Immunol 104:1–7

    Article  CAS  PubMed  Google Scholar 

  7. Aliko V, Qirjo M, Sula E, Morina V, Faggio C (2018) Antioxidant defence system, immune response and erythron profile modulation in goldfish, Carassius auratus, after acute manganese treatment. Fish Shellfish Immunol 76:101–109

    Article  PubMed  Google Scholar 

  8. Mohamed RA, Yousef YM, El-Tras WF, Khalafallaa MM (2021) Dietary essential oil extract from sweet orange (Citrus sinensis) and bitter lemon (Citrus limon) peels improved Nile tilapia performance and health status. Aquac Res 52(4):1463–1479

    Article  CAS  Google Scholar 

  9. Sallam AE, Mansour AT, Alsaqufi AS, Salem MES, El-Feky MM (2020) Growth performance, anti-oxidative status, innate immunity, and ammonia stress resistance of Siganus rivulatus fed diet supplemented with zinc and zinc nanoparticles. Aquaculture Reports 18:100410

    Article  Google Scholar 

  10. Kishawy AT, Roushdy EM, Hassan FA, Mohammed HA, Abdelhakim TM (2020) Comparing the effect of diet supplementation with different zinc sources and levels on growth performance, immune response and antioxidant activity of tilapia. Oreochromis Niloticus Aquac Nutri 26(6):1926–1942

    Article  CAS  Google Scholar 

  11. Sarkar B, Mahanty A, Gupta SK, Choudhury AR, Daware A, Bhattacharjee S (2022) Nanotechnology: a next-generation tool for sustainable aquaculture. Aquaculture 546:737330

    Article  CAS  Google Scholar 

  12. Afridi AJ, Zuberi A, Yousafzai AM, Kamran M, Ullah S (2019) Hemp (Marijuana) reverted copper-induced toxic effects on the essential fatty acid profile of Labeo rohita and Cirrhinus mrigala. Mol Biol Rep 46(1):391–401

    Article  CAS  PubMed  Google Scholar 

  13. Amir I, Zuberi A, Kamran M, Imran M (2019) Evaluation of commercial application of dietary encapsulated probiotic (Geotrichum candidum QAUGC01): effect on growth and immunological indices of rohu (Labeo rohita, Hamilton 1822) in semi-intensive culture system. Fish Shellfish Immunol 95:464–472

    Article  CAS  PubMed  Google Scholar 

  14. Tawfik M, Moustafa M, Abumourad IMK, El-Meliegy E, Refai M (2017) Evaluation of nano zinc oxide feed additive on tilapia growth and immunity. In 15th Int Conf Environ Sci Technol 1342(1):1–9

    Google Scholar 

  15. Swain PS, Rao SB, Rajendran D, Dominic G, Selvaraju S (2016) Nano zinc, an alternative to conventional zinc as animal feed supplement: a review. Animal Nutrition 2(3):134–141

    Article  PubMed  PubMed Central  Google Scholar 

  16. Li H, Zhou Q, Wu Y, Fu J, Wang T, Jiang G (2009) Effects of waterborne nano-iron on medaka (Oryzias latipes): antioxidant enzymatic activity, lipid peroxidation and histopathology. Ecotoxicol Environ Saf 72(3):684–692

    Article  CAS  PubMed  Google Scholar 

  17. Chen YH, Chen HH, Jeng SS (2015) Rapid renewal of red blood cells in the common carp following prolonged exposure to air. Fish Sci 81(2):255–265

    Article  CAS  Google Scholar 

  18. Chen Z, Huang S and Zhao M (2016) Molecularly imprinted polymers for biomimetic catalysts. Mol Imprinted Catal 229–239

  19. Hara T, Takeda TA, Takagishi T, Fukue K, Kambe T, Fukada T (2017) Physiological roles of zinc transporters: molecular and genetic importance in zinc homeostasis. J Physiol Sci 67(2):283–301

    Article  CAS  PubMed  Google Scholar 

  20. Domínguez D, Robaina L, Zamorano MJ, Karalazos V, Izquierdo M (2019) Effects of zinc and manganese sources on gilthead seabream (Sparus aurata) fingerlings. Aquaculture 505:386–392

    Article  Google Scholar 

  21. Dekani L, Johari SA, Joo HS (2019) Comparative toxicity of organic, inorganic and nanoparticulate zinc following dietary exposure to common carp (Cyprinus carpio). Sci Total Environ 656:1191–1198

    Article  CAS  PubMed  Google Scholar 

  22. Zhao CY, Tan SX, Xiao XY, Qui XS, Pan JQ, Tang ZX (2014) Effects of dietary zinc oxide nanoparticles on growth performance and antioxidative status in broilers. Springer 160:361–367

    CAS  Google Scholar 

  23. Shahpar Z, Johari SA (2019) Effects of dietary organic, inorganic, and nanoparticulate zinc on rainbow trout, Oncorhynchus mykiss larvae. Biol Trace Elem Res 190(2):535–540

    Article  CAS  PubMed  Google Scholar 

  24. Sen S and Pathak Y (Eds) (2016) Nanotechnology in nutraceuticals: production to consumption. CRC Press

  25. Mahmoud HK, Al-Sagheer AA, Reda FM, Mahgoub SA, Ayyat MS (2017) Dietary curcumin supplement influence on growth, immunity, antioxidant status, and resistance to Aeromonas hydrophila in Oreochromis niloticus. Aquaculture 475:16–23

    Article  CAS  Google Scholar 

  26. Awad A, Zaglool AW, Ahmed SA, Khalil SR (2019) Transcriptomic profile change, immunological response and disease resistance of Oreochromis niloticus fed with conventional and Nano-Zinc oxide dietary supplements. Fish Shellfish Immunol 93:336–343

    Article  CAS  PubMed  Google Scholar 

  27. Salam A, Khan AR, Liu L, Yang S, Azhar W, Ulhassan Z, Gan Y (2022) Seed priming with zinc oxide nanoparticles downplayed ultrastructural damage and improved photosynthetic apparatus in maize under cobalt stress. J Hazard Mater 423:127021

    Article  CAS  PubMed  Google Scholar 

  28. Li MZ, Huang JT, Tasi YH, Mao SY, Fu CM, Lien TF (2015) Nanosize of zinc oxide and the effects on zinc digestibility, growth performances, and immune response and serum parameters of weanling piglets. Anim Sci J 87:1379–1385

    Article  Google Scholar 

  29. Faiz H, Zuberi A, Nazir S, Rauf M, and Younus N (2015) Zinc oxide, zinc sulfate and zinc oxide nanoparticles as a source of dietary zinc: comparative effects on growth and hematological indices of juvenile grass carp (Ctenopharyngodon idella). Int J Agric Biol 17(3), 568-574

  30. Krithika G, Saraswathy R, Muralidhar M, Thulasi D, Lalitha N, Kumararaja P, Jayavel R (2017) Zinc oxide nanoparticles—synthesis, characterization and antibacterial activity. J Nanosci Nanotech 17(8):5209–5216

    Article  CAS  Google Scholar 

  31. Fayed WM, Khalil RH, Sallam GR, Mansour AT, Elkhayat BK, Omar EA (2019) Estimating the effective level of Yucca schidigera extract for improvement of the survival, haematological parameters, immunological responses and water quality of European seabass juveniles (Dicentrarchus labrax). Aquaculture Reports 15:100208

    Article  Google Scholar 

  32. Yaqub A, Awan MN, Kamran M and Majeed I (2021) Evaluation of potential applications of dietary probiotic (Bacillus licheniformis SB3086): effect on growth, digestive enzyme activity, hematological, biochemical, and immune response of Tilapia (Oreochromis mossambicus). Turk J Fish Aquat Sci 22(5)

  33. Zak AK, Razali R, Abd Majid WH, Darroudi M (2011) Synthesis and characterization of narrow size distribution of zinc oxide nanoparticles. Int J Nanomed 6:1399

    Google Scholar 

  34. Ondijo C, Kengara F and K’Owino I (2022) Synthesis, characterization, and evaluation of the remediation activity of Cissus quadrangularis zinc oxide nanoparticle-activated carbon composite on dieldrin in aqueous solution. J Nanotech

  35. Zhao HX, Cao JM, Liu XH, Zhu X, Chen SC, Lan HB, Wang AL (2011) Effect of supplemental dietary zinc sources on the growth and carbohydrate utilization of tilapia Smith 1840, Oreochromis niloticus× Oreochromis aureus. Aquac Nutr 17(1):64–72

    Article  CAS  Google Scholar 

  36. Ibrahim MS, El-Gendi GM, Ahmed AI, El-Haroun ER, Hassaan MS (2022) Nano zinc versus bulk zinc form as dietary supplied: effects on growth, intestinal enzymes and topography, and hemato-biochemical and oxidative stress biomarker in Nile tilapia (Oreochromis niloticus Linnaeus, 1758). Biol Trace Elem Res 200(3):1347–1360

    Article  CAS  PubMed  Google Scholar 

  37. AOAC (2000) Official methods of analysis of the Association of Official Analytical Chemists, 17th edn. AOAC Intl, Washington DC, p 2200

    Google Scholar 

  38. Giannopolitis CN, Ries SK (1977) Superoxide dismutases: II. Purification and quantitative relationship with water-soluble protein in seedlings. Plant Physiol 59(2):315–318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ahmed R, Seth V, Pasha ST, Banerjee BD (2000) Influence of dietary ginger (Zingiber officinales Rosc) on oxidative stress induced by malathion in rats. Food Chem Toxicol 38(5):443–450

    Article  CAS  PubMed  Google Scholar 

  40. Chance M, Mehaly AC (1977) Assay of catalase and peroxidase. Methods Enzymol 2:764–817. https://doi.org/10.1016/S0076-6879(55)02300-8

    Article  Google Scholar 

  41. Placer ZA, Cushman LL, Johnson BC (1996) Estimation of lipid peroxidation, malondialdehyde in biochemical system. Anal Biochem 16:359–367

    Article  Google Scholar 

  42. Ullah A, Zuberi A, Ahmad M, Shah AB, Younus N, Ullah S, Khattak MNK (2018) Dietary administration of the commercially available probiotics enhanced the survival, growth, and innate immune responses in Mori (Cirrhinus mrigala) in a natural earthen polyculture system. Fish Shellfish Immunol 72:266–272

    Article  CAS  PubMed  Google Scholar 

  43. Anderson DP and Siwicki AK (1995) Basic hematology and serology for fish health programs

  44. Rahman ANA, Khalil AA, Abdallah HM, El Hady M (2018) The effects of the dietary supplementation of Echinacea purpurea extract and/or vitamin C on the intestinal histomorphology, phagocytic activity, and gene expression of the Nile tilapia. Fish Shellfish Immunol 82:312–318

    Article  PubMed  Google Scholar 

  45. Panigrahi A, Kiron V, Satoh S, Watanabe T (2010) Probiotic bacteria Lactobacillus rhamnosus influences the blood profile in rainbow trout Oncorhynchus mykiss (Walbaum). Fish Physiol Biochem 36(4):969–977

    Article  CAS  PubMed  Google Scholar 

  46. Ahmed SM, Ali AH (2013) Serum proteins and leucocytes differential count in the common carp (Cyprinus carpio L) infested with ectoparasites. Mesopotamian J Marine Sci 28(2):151–162

    Article  Google Scholar 

  47. Vijayakumar S, Vaseeharan B, Malaikozhundan B, Shobiya M (2016) Laurus nobilis leaf extract mediated green synthesis of ZnO nanoparticles: characterization and biomedical applications. Biomed Pharmacother 84:1213–1222

    Article  CAS  PubMed  Google Scholar 

  48. AL-Asady ZM, AL-Hamdani AH, Hussein MA (2020) Study the optical and morphology properties of zinc oxide nanoparticles. AIP Conf Proc 2213(1):020061

    Article  CAS  Google Scholar 

  49. Yaqub A, Faheem I, Anjum KM, Ditta SA, Yousaf MZ, Tanvir F, Raza C (2020) Neurotoxicity of ZnO nanoparticles and associated motor function deficits in mice. Appl Nanosci 10(1):177–185

    Article  CAS  Google Scholar 

  50. Kumar N, Krishnani KK, Kumar P, Singh NP (2017) Zinc nanoparticles potentiates thermal tolerance and cellular stress protection of Pangasius hypophthalmus reared under multiple stressors. J Therm Biol 70:61–68

    Article  CAS  PubMed  Google Scholar 

  51. Ghazi S, Diab AM, Khalafalla MM, Mohamed RA (2022) Synergistic effects of selenium and zinc oxide nanoparticles on growth performance, hemato-biochemical profile, immune and oxidative stress responses, and intestinal morphometry of Nile tilapia (Oreochromis niloticus). Biol Trace Elem Res 200(1):364–374

    Article  CAS  PubMed  Google Scholar 

  52. Khalil HS, Mansour AT, Goda AMA, Omar EA (2019) Effect of selenium yeast supplementation on growth performance, feed utilization, lipid profile, liver and intestine histological changes, and economic benefit in meagre, Argyrosomus regius, fingerlings. Aquaculture 501:135–143

    Article  CAS  Google Scholar 

  53. Rajan TS, De Nicola GR, Iori R, Rollin P, Bramanti P, Mazzon E (2016) Anticancer activity of glucomoringin isothiocyanate in human malignant astrocytoma cells. Fitoterapia 110:1–7

    Article  CAS  PubMed  Google Scholar 

  54. Uniyal S, Garg AK, Jadhav SE, Chaturvedi VK, Mohanta RK (2017) Comparative efficacy of zinc supplementation from different sources on nutrient digestibility, hemato-biochemistry and anti-oxidant activity in guinea pigs. Livest Sci 204:59–64

    Article  Google Scholar 

  55. Zalewski PD, Truong-Tran AQ, Grosser D, Jayaram L, Murgia C, Ruffin RE (2005) Zinc metabolism in airway epithelium and airway inflammation: basic mechanisms and clinical targets. Rev Pharmacol Ther 105(2):127–149

    Article  CAS  Google Scholar 

  56. Asagba SO, Eriyamremu GE, Igberaese ME (2008) Bioaccumulation of cadmium and its biochemical effect on selected tissues of the catfish (Clarias gariepinus). Fish Physiol Biochem 34(1):61–69

    Article  CAS  PubMed  Google Scholar 

  57. Ruas CBG, dos Santos Carvalho C, de Araújo HSS, Espíndola ELG, Fernandes MN (2008) Oxidative stress biomarkers of exposure in the blood of cichlid species from a metal-contaminated river. Ecotoxicol Environ Saf 71(1):86–93

    Article  CAS  PubMed  Google Scholar 

  58. Cao L, Huang W, Shan X, Ye Z, Dou S (2012) Tissue-specific accumulation of cadmium and its effects on antioxidative responses in Japanese flounder juveniles. Environ Toxicol Pharmacol 33(1):16–25

    Article  CAS  PubMed  Google Scholar 

  59. Sharma P, Jha AB, Dubey RS and Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defence mechanism in plants under stressful conditions. J Botany

  60. Hao L, Chen L (2012) Oxidative stress responses in different organs of carp (Cyprinus carpio) with exposure to ZnO nanoparticles. Ecotoxicol Environ Saf 80:103–110

    Article  CAS  PubMed  Google Scholar 

  61. Xiong D, Fang T, Yu L, Sima X, Zhu W (2011) Effects of nano-scale TiO2, ZnO and their bulk counterparts on zebrafish: acute toxicity, oxidative stress and oxidative damage. Sci Total Environ 409(8):1444–1452

    Article  CAS  PubMed  Google Scholar 

  62. Feng L, Tan LN, Liu Y, Jiang J, Jiang WD, Hu K, Zhou XQ (2011) Influence of dietary zinc on lipid peroxidation, protein oxidation and antioxidant defence of juvenile Jian carp (Cyprinus carpio var. Jian). Aquac Nutr 17(4):e875–e882

    Article  Google Scholar 

  63. Muralisankar T, Bhavan PS, Radhakrishnan S, Seenivasan C, Manickam N, Srinivasan V (2014) Dietary supplementation of zinc nanoparticles and its influence on biology, physiology and immune responses of the freshwater prawn. Macrobrachium Rosenbergii Biol Trace Elem Res 160(1):56–66

    Article  CAS  PubMed  Google Scholar 

  64. Liu Y, Wang J, Wei Y, Zhang H, Xu M, Dai J (2008) Induction of time-dependent oxidative stress and related transcriptional effects of perfluorododecanoic acid in zebrafish liver. Aquat Toxicol 89(4):242–250

    Article  CAS  PubMed  Google Scholar 

  65. Nielsen F, Mikkelsen BB, Nielsen JB, Andersen HR, Grandjean P (1997) Plasma malnodialdehyde as biomarker for oxidative stress: reference interval and effects of life-style factors. Clin Chem 43(7):1209–1214

    Article  CAS  PubMed  Google Scholar 

  66. Saddick S, Afifi M, Zinada OA (2015) Effect of zinc nanoparticles on oxidative stress-related genes and antioxidant enzyme activity in the brain of Oreochromis niloticus and Tilapia zillii. Saudi J Biol Sci 24:1672–1678

    Article  PubMed  PubMed Central  Google Scholar 

  67. Kumar N, Krishnani KK, Singh NP (2018) Effect of dietary zinc-nanoparticles on growth performance, anti-oxidative and immunological status of fish reared under multiple stressors. Biol Trace Elem Res 186(1):267–278

    Article  CAS  PubMed  Google Scholar 

  68. Docan A, Grecu I, Dediu L (2018) Use of hematological parameters as assessment tools in fish health status. J Agroaliment Process Technol 24(4):317–324

    CAS  Google Scholar 

  69. Fazio F (2019) Fish haematology analysis as an important tool of aquaculture: a review. Aquaculture 500:237–242

    Article  Google Scholar 

  70. Shahzad K, Khan MN, Jabeen F, Kosour N, Chaudhry AS, Sohail M, Ahmad N (2019) Toxicity of zinc oxide nanoparticles (ZnO-NPs) in tilapia (Oreochromis mossambicus): tissue accumulation, oxidative stress, histopathology and genotoxicity. Int J Environ Sci Technol 16(4):1973–1984

    Article  CAS  Google Scholar 

  71. Galaktionov VG (2005) Evolyucionnaya immunologiya: Ucheb. posobie [Evolutionary immunology: tutorial]. M: IKC “Akademkniga

  72. Fazio F, Marafioti S, Torre A, Sanfilippo M, Panzera M, Faggio C (2013) Haematological and serum protein profiles of Mugil cephalus: effect of two different habitats. Ichthyol Res 60(1):36–42

    Article  Google Scholar 

  73. Kaya H, Aydın F, Gürkan M, Yılmaz S, Ates M, Demir V, Arslan Z (2015) Effects of zinc oxide nanoparticles on bioaccumulation and oxidative stress in different organs of tilapia (Oreochromis niloticus). Environ Toxicol Pharmacol 40(3):936–947

    Article  CAS  PubMed  Google Scholar 

  74. Chupani L, Niksirat H, Velíšek J, Stará A, Hradilová Š, Zusková Kolařík J, E, (2018) Chronic dietary toxicity of zinc oxide nanoparticles in common carp (Cyprinus carpio L.): tissue accumulation and physiological responses. Ecotoxicol Environ Safe 147:110–116

    Article  CAS  Google Scholar 

  75. Munir T, Latif M, Mahmood A, Malik A, Shafiq F (2020) Influence of IP-injected ZnO-nanoparticles in Catla catla fish: hematological and serological profile. Naunyn Schmiedebergs Arch Pharmacol 393(12):2453–2461

    Article  CAS  PubMed  Google Scholar 

  76. Qiao N, Shao Z (2010) Isolation and characterization of a novel biosurfactant produced by hydrocarbon-degrading bacterium Alcanivorax dieselolei B-5. J Appl Microbiol 108(4):1207–1216

    Article  CAS  PubMed  Google Scholar 

  77. Irianto A, Austin B (2002) Use of probiotics to control furunculosis in rainbow trout, Oncorhynchus mykiss (Walbaum). J Fish Dis 25(6):333–342

    Article  CAS  Google Scholar 

  78. Yada T, Azuma T, Takagi Y (2001) Stimulation of non-specific immune functions in seawater-acclimated rainbow trout, Oncorhynchus mykiss, with reference to the role of growth hormone. Comp Biochem Physiol B: Biochem Mol Biol 129(2–3):695–701

    Article  CAS  PubMed  Google Scholar 

  79. Witeska M, Kondera E, Ługowska K, Bojarski B (2022) Hematological methods in fish—not only for beginners. Aquaculture 547:737498

    Article  CAS  Google Scholar 

  80. Swain P, Das R, Das A, Padhi SK, Das KC, Mishra SS (2019) Effects of dietary zinc oxide and selenium nanoparticles on growth performance, immune responses and enzyme activity in rohu, Labeo rohita (Hamilton). Aquac Nutr 25(2):486–494

    Article  CAS  Google Scholar 

  81. Gharaei A, Khajeh M, Khosravanizadeh A, Mirdar J, Fadai R (2020) Fluctuation of biochemical, immunological, and antioxidant biomarkers in the blood of beluga (Huso huso) under effect of dietary ZnO and chitosan–ZnO NPs. Fish Physiol Biochem 46(2):547–561

    Article  CAS  PubMed  Google Scholar 

  82. Kurian A, Elumalai P (2021) Study on the impacts of chemical and green synthesized (Leucas aspera and oxy-cyclodextrin complex) dietary zinc oxide nanoparticles in Nile tilapia (Oreochromis niloticus). Environ Sci Pollut Res 28(16):20344–20361

    Article  CAS  Google Scholar 

  83. Ates M, Demir V, Arslan Z, Kaya H, Yılmaz S, Camas M (2016) Chronic exposure of tilapia (Oreochromis niloticus) to iron oxide nanoparticles: effects of particle morphology on accumulation, elimination, hematology and immune responses. Aquat Toxicol 177:22–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Hardy H, Harris J, Lyon E, Beal J, Foey AD (2013) Probiotics, prebiotics and immunomodulation of gut mucosal defences: homeostasis and immunopathology. Nutrients 5(6):1869–1912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Ahmad M, Zuberi A, Ali M, Syed A, Khan A, Kamran M (2020) Effect of acclimated temperature on thermal tolerance, immune response and expression of HSP genes in Labeo rohita, Catla catla and their intergeneric hybrids. J Therm Biol 89:102570

    Article  CAS  PubMed  Google Scholar 

  86. Dawood MA, Koshio S, Zaineldin AI, van Doan H, Moustafa EM, Abdel-Daim MM, Hassaan MS (2019) Dietary supplementation of selenium nanoparticles modulated systemic and mucosal immune status and stress resistance of red sea bream (Pagrus major). Fish Physiol Biochem 45(1):219–230

    Article  CAS  PubMed  Google Scholar 

  87. Hassaan MS, Nssar KM, Mohammady EY, Amin A, Tayel SI, El-Haroun ER (2020) Nano-zeolite efficiency to mitigate the aflatoxin B1 (AFB1) toxicity: effects on growth, digestive enzymes, antioxidant, DNA damage and bioaccumulation of AFB1 residues in Nile tilapia (Oreochromis niloticus). Aquaculture 523:735123

    Article  CAS  Google Scholar 

  88. Javed M, Usmani N (2013) Assessment of heavy metal (Cu, Ni, Fe Co, Mn, Cr, Zn) pollution in effluent dominated rivulet water and their effect on glycogen metabolism and histology of Mastacembelus armatus. Springerplus 2(1):1–13

    Article  Google Scholar 

  89. Roughead ZK, Lukaski HC (2003) Inadequate copper intake reduces serum insulin-like growth factor-I and bone strength in growing rats fed graded amounts of copper and zinc. J Nutr 133(2):442–448

    Article  CAS  PubMed  Google Scholar 

  90. El Basuini MF, El-Hais AM, Dawood MA, Abou-Zeid AES, EL-Damrawy SZ, Khalafalla MMES, Dossou S (2016) Effect of different levels of dietary copper nanoparticles and copper sulfate on growth performance, blood biochemical profiles, antioxidant status and immune response of red sea bream (Pagrus major). Aquaculture 455:32–40

    Article  Google Scholar 

  91. Overland JE, Wang M (2013) When will the summer Arctic be nearly sea ice free? Geophys Res Lett 40(10):2097–2101

    Article  Google Scholar 

  92. Waszkiewicz-Robak B, Bartnikowska E (2009) Effects of spent brewer’s yeast and biological β-glucans on selected parameters of lipid metabolism in blood and liver in rats. J Animal Feed Sci 18(4):699–708

    Article  Google Scholar 

  93. Abdel-Tawwab M, Razek NA, Abdel-Rahman AM (2019) Immunostimulatory effect of dietary chitosan nanoparticles on the performance of Nile tilapia, Oreochromis niloticus (L.). Fish Shellfish Immunol 88:254–258

    Article  CAS  PubMed  Google Scholar 

  94. Hastuti S, Subandiyono S (2020) Aminotransferase, hematological indices and growth of tilapia (Oreochomis niloticus) reared in various stocking densities in aquaponic systems. Aquac Aquar Conserv Legis 13(2):813–824

    Google Scholar 

  95. Sanchez FA, Vivian-Rogers VR, Urakawa H (2019) Tilapia recirculating aquaculture systems as a source of plant growth promoting bacteria. Aquac Res 50(8):2054–2065

    Article  CAS  Google Scholar 

  96. Rather MA, Sharma R, Aklakur M, Ahmad S, Kumar N, Khan M, Ramya VL (2011) Nanotechnology: a novel tool for aquaculture and fisheries development A prospective mini-review. Fish Aquac J 16(1–5):3

    Google Scholar 

  97. Abu-Elala NM, Mohamed SH, Zaki MM, Eissa AE (2015) Assessment of the immune-modulatory and antimicrobial effects of dietary chitosan on Nile tilapia (Oreochrmis niloticus) with special emphasis to its bio-remediating impacts. Fish Shellfish Immunol 46(2):678–685

    Article  CAS  PubMed  Google Scholar 

  98. Chen J, Chen L (2019) Effects of chitosan-supplemented diets on the growth performance, nonspecific immunity and health of loach fish (Misgurnus anguillicadatus). Carbohyd Polym 225:115227

    Article  CAS  Google Scholar 

  99. Younus N, Zuberi A, Mahmoood T, Akram W, Ahmad M (2020) Comparative effects of dietary micro-and nano-scale chitosan on the growth performance, non-specific immunity, and resistance of silver carp Hypophthalmichthys molitrix against Staphylococcus aureus infection. Aquacult Int 28(6):2363–2378

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design.

The study plan, supervision and final drafts were reviewed and edited by AY, the laboratory work analysis and first drafts of manuscript were done by MN and MK. The experiment was performed and data was collected by MN and AA; statistical analysis and interpretation were done by IM and MK. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Atif Yaqub.

Ethics declarations

Ethical Approval

All experimental procedures were approved by the Institutional Bioethics Committee, GC University Lahore (Approval granted to 0681-Mphil-Z-20). The handling of experimental animals was performed following the recommendations in the international guiding principles for biomedical research involving animals (ICLAS, 2012). All manipulation was performed under anesthesia, and all efforts were made to minimize animal stress.

Consent for Publication

All authors have agreed to the peer review of the manuscript and for publication Biological Trace Element Research.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yaqub, A., Nasir, M., Kamran, M. et al. Immunomodulation, Fish Health and Resistance to Staphylococcus aureus of Nile Tilapia (Oreochromis niloticus) Fed Diet Supplemented with Zinc Oxide Nanoparticles and Zinc Acetate. Biol Trace Elem Res 201, 4912–4925 (2023). https://doi.org/10.1007/s12011-023-03571-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-023-03571-w

Keywords

Navigation