Skip to main content

Advertisement

Log in

Copper Nanoparticles Induce Apoptosis and Oxidative Stress in SW480 Human Colon Cancer Cell Line

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Cu nanoparticles (CuNPs) have various applications in biomedicine, owing to their unique properties. As the effect of CuNPs on the induction of oxidative stress and apoptosis in the human colorectal cancer cell line SW480 has not yet been studied, we investigated the toxicity and mechanism of action of these NPs in SW480 cells. MTT assay was performed to assess the effect of the particles on the viability of SW480 cells. The levels of oxidative stress were assessed after 24 h of treatment with CuNPs by evaluating the Reactive Oxygen Specious (ROS) production. The antioxidant enzyme activity was assessed using a colorimetric method. To investigate the effect of NPs on cellular apoptosis, Hoechst33258 staining was performed, and the expression of Bax, Bcl-2, and p53 was evaluated by qRT-PCR. The MTT assay results showed that CuNPs inhibited the viability of SW480 cells. Moreover, the increase in ROS production at all three concentrations (31, 68, and 100 μg/ml) was significant. It has been observed that CuNPs lead to increased expression of Bax and p53, and decreased expression of Bcl-2. Hoechst staining was performed to confirm apoptosis. In conclusion, the induction of apoptosis demonstrated the anticancer potential of the CuNPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data used and analyzed during the current study are included in this manuscript and are available from the corresponding author upon reasonable request.

References

  1. Sawicki T, Ruszkowska M, Danielewicz A, Niedźwiedzka E, Arłukowicz T, Przybyłowicz KE (2021) A review of colorectal cancer in terms of epidemiology, risk factors, development, symptoms and diagnosis. Cancers 13(9):2025

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Johnson CM, Wei C, Ensor JE, Smolenski DJ, Amos CI, Levin B et al (2013) Meta-analyses of colorectal cancer risk factors. Cancer Causes Control 24(6):1207–1222

    Article  PubMed Central  PubMed  Google Scholar 

  3. Wang X, O’Connell K, Jeon J, Song M, Hunter D, Hoffmeister M et al (2019) Combined effect of modifiable and non-modifiable risk factors for colorectal cancer risk in a pooled analysis of 11 population-based studies. BMJ Open Gastroenterol 6(1):e000339

    Article  PubMed Central  PubMed  Google Scholar 

  4. Samad AKA, Taylor RS, Marshall T, Chapman MAS (2005) A meta-analysis of the association of physical activity with reduced risk of colorectal cancer. Colorectal Dis 7(3):204–213

    Article  CAS  PubMed  Google Scholar 

  5. Amitay EL, Carr PR, Jansen L, Walter V, Roth W, Herpel E et al (2018) Association of aspirin and nonsteroidal anti-inflammatory drugs with colorectal cancer risk by molecular subtypes. JNCI: J Natl Cancer Inst 111(5):475–83

    Article  Google Scholar 

  6. Labadie J, Harrison T, Buchanan D, Campbell P, Chan A, Gallinger S et al (2020) Postmenopausal hormone therapy is primarily associated with reduced risk of colorectal cancer arising through the adenoma-carcinoma pathway. Cancer Epidemiol Biomarkers Prev 29(3):693

    Article  Google Scholar 

  7. Dekker E, Tanis P, Vleugels J, Kasi P, Wallace M (2019) Risk factors. Lancet 394:1467–1480

    Article  PubMed  Google Scholar 

  8. Aghebati-Maleki A, Dolati S, Ahmadi M, Baghbanzhadeh A, Asadi M, Fotouhi A et al (2020) Nanoparticles and cancer therapy: perspectives for application of nanoparticles in the treatment of cancers. J Cell Physiol 235(3):1962–1972

    Article  CAS  PubMed  Google Scholar 

  9. Aydın A, Sipahi H, Charehsaz M (2012) Nanoparticles toxicity and their routes of exposures. Recent Adv Novel Drug Carrier Syst 483–500

  10. Gavas S, Quazi S, Karpiński TM (2021) Nanoparticles for cancer therapy: current progress and challenges. Nanoscale Res Lett 16(1):1–21

    Article  Google Scholar 

  11. Ke Y, Al Aboody MS, Alturaiki W, Alsagaby SA, Alfaiz FA, Veeraraghavan VP et al (2019) Photosynthesized gold nanoparticles from Catharanthus roseus induces caspase-mediated apoptosis in cervical cancer cells (HeLa). Artif Cells Nanomed Biotechnol 47(1):1938–1946

    Article  CAS  PubMed  Google Scholar 

  12. Daei S, Ziamajidi N, Abbasalipourkabir R, Khanaki K, Bahreini F (2022) Anticancer effects of gold nanoparticles by inducing apoptosis in bladder cancer 5637 Cells. Biol Trace Elem Res 200(6):2673–2683

    Article  CAS  PubMed  Google Scholar 

  13. Li N, Xia T, Nel AE (2008) The role of oxidative stress in ambient particulate matter-induced lung diseases and its implications in the toxicity of engineered nanoparticles. Free Radic Biol Med 44(9):1689–1699

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Lelièvre P, Sancey L, Coll JL, Deniaud A, Busser B (2020) The multifaceted roles of copper in cancer: a trace metal element with dysregulated metabolism, but also a target or a bullet for therapy. Cancers (Basel) 12(12)

  15. Pohanka M (2019) Copper and copper nanoparticles toxicity and their impact on basic functions in the body. Bratisl Lek Listy 120(6):397–409

    CAS  PubMed  Google Scholar 

  16. Halevas E, Pantazaki A (2018) Copper nanoparticles as therapeutic anticancer agents. Nanomed Nanotechnol J 2(1):119–139

    Google Scholar 

  17. Zhang C-H, Wang Y, Sun Q-Q, Xia L-L, Hu J-J, Cheng K et al (2018) Copper nanoparticles show obvious in vitro and in vivo reproductive toxicity via ERK mediated signaling pathway in female mice. Int J Biol Sci 14(13):1834

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Yu Z, Li Q, Wang J, Yu Y, Wang Y, Zhou Q et al (2020) Reactive oxygen species-related nanoparticle toxicity in the biomedical field. Nanoscale Res Lett 15(1):115

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Bayat M, Daei S, Ziamajidi N, Abbasalipourkabir R, Nourian A (2021) The protective effects of vitamins A, C, and E on zinc oxide nanoparticles (ZnO NPs)-induced liver oxidative stress in male Wistar rats. Drug Chem Toxicol 1–10

  20. Birben E, Sahiner UM, Sackesen C, Erzurum S, Kalayci O (2012) Oxidative stress and antioxidant defense. World Allergy Organ J 5(1):9–19

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Brady HJ, Gil-Gómez G, Bax (1998) The pro-apoptotic Bcl-2 family member Bax. Int J Biochem Cell Biol 30(6):647–50

    Article  CAS  PubMed  Google Scholar 

  22. Siddiqui WA, Ahad A, Ahsan H (2015) The mystery of BCL2 family: Bcl-2 proteins and apoptosis: an update. Arch Toxicol 89(3):289–317

    Article  CAS  PubMed  Google Scholar 

  23. Liu F-R, Bai S, Feng Q, Pan X-Y, Song S-L, Fang H et al (2018) Anti-colorectal cancer effects of anti-p21Ras scFv delivered by the recombinant adenovirus KGHV500 and cytokine-induced killer cells. BMC Cancer 18(1):1–10

    Article  Google Scholar 

  24. Mukhopadhyay R, Kazi J, Debnath MC (2018) Synthesis and characterization of copper nanoparticles stabilized with Quisqualis indica extract: evaluation of its cytotoxicity and apoptosis in B16F10 melanoma cells. Biomed Pharmacother 97:1373–1385

    Article  CAS  PubMed  Google Scholar 

  25. Al-Joufi FA, Setia A, Salem-Bekhit MM, Sahu RK, Alqahtani FY, Widyowati R et al (2022) Molecular pathogenesis of colorectal cancer with an emphasis on recent advances in biomarkers, as well as nanotechnology-based diagnostic and therapeutic approaches. Nanomaterials 12(1):169

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Basavaraj KH (2012) Nanotechnology in medicine and relevance to dermatology: present concepts. Indian J Dermatol 57(3):169–174

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Yang Y, Du X, Wang Q, Liu J, Zhang E, Sai L et al (2019) Mechanism of cell death induced by silica nanoparticles in hepatocyte cells is by apoptosis. Int J Mol Med 44(3):903–912

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Iversen T-G, Skotland T, Sandvig K (2011) Endocytosis and intracellular transport of nanoparticles: present knowledge and need for future studies. Nano Today 6(2):176–185

    Article  CAS  Google Scholar 

  29. Azizi M, Ghourchian H, Yazdian F, Dashtestani F, AlizadehZeinabad H (2017) Cytotoxic effect of albumin coated copper nanoparticle on human breast cancer cells of MDA-MB 231. PLoS ONE 12(11):e0188639

    Article  PubMed Central  PubMed  Google Scholar 

  30. Jose GP, Santra S, Mandal SK, Sengupta TK (2011) Singlet oxygen mediated DNA degradation by copper nanoparticles: potential towards cytotoxic effect on cancer cells. J Nanobiotechnology 9(1):9

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Sulaiman GM, Tawfeeq AT, Jaaffer MD (2018) Biogenic synthesis of copper oxide nanoparticles using olea europaea leaf extract and evaluation of their toxicity activities: an in vivo and in vitro study. Biotechnol Prog 34(1):218–230

    Article  CAS  PubMed  Google Scholar 

  32. Zou L, Cheng G, Xu C, Liu H, Wang Y, Li N et al (2021) Copper nanoparticles induce oxidative stress via the heme oxygenase 1 signaling pathway in vitro studies. Int J Nanomedicine 16:1565–1573

    Article  PubMed Central  PubMed  Google Scholar 

  33. Saranya R, Ali MM (2017) Synthesis of colloidal copper nanoparticles and its cytotoxicity effect on MCF-7 breast cancer cell lines. J Chem Pharm Res Sci ISSN 974:2115

    Google Scholar 

  34. Mehdizadeh T, Zamani A, Froushani SMA (2020) Preparation of Cu nanoparticles fixed on cellulosic walnut shell material and investigation of its antibacterial, antioxidant and anticancer effects. Heliyon 6(3):e03528

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Sharma P, Goyal D, Baranwal M, Chudasama B (2021) Oxidative stress induced cytotoxicity of colloidal copper nanoparticles on RAW 2647 macrophage cell line. J Nanosci Nanotechnol 21(10):5066–74

    Article  CAS  PubMed  Google Scholar 

  36. Chung IM, Abdul Rahuman A, Marimuthu S, Vishnu Kirthi A, Anbarasan K, Padmini P et al (2017) Green synthesis of copper nanoparticles using Eclipta prostrata leaves extract and their antioxidant and cytotoxic activities. Exp Ther Med 14(1):18–24

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Vilgeena W, Alby Babu E, Nidhina D, Meena K (2021) In-vitro antioxidant and cytotoxicity (sk-mel-3 cell) activity of green synthesised copper nanoparticle using P. pellucida plant aqueous extract. Nanomed Res J 6(3):279–86

    Google Scholar 

  38. Song L, Connolly M, Fernández-Cruz ML, Vijver MG, Fernández M, Conde E et al (2014) Species-specific toxicity of copper nanoparticles among mammalian and piscine cell lines. Nanotoxicology 8(4):383–393

    Article  CAS  PubMed  Google Scholar 

  39. Jinu U, Gomathi M, Saiqa I, Geetha N, Benelli G, Venkatachalam P (2017) Green engineered biomolecule-capped silver and copper nanohybrids using Prosopis cineraria leaf extract: Enhanced antibacterial activity against microbial pathogens of public health relevance and cytotoxicity on human breast cancer cells (MCF-7). Microb Pathog 105:86–95

    Article  CAS  PubMed  Google Scholar 

  40. Shahriary S, Tafvizi F, Khodarahmi P, Shaabanzadeh M (2022) Phyto-mediated synthesis of CuO nanoparticles using aqueous leaf extract of Artemisia deserti and their anticancer effects on A2780-CP cisplatin-resistant ovarian cancer cells. Biomass Convers Biorefin 1–17

  41. Zou L, Cheng G, Xu C, Liu H, Wang Y, Li N et al (2021) Copper nanoparticles induce oxidative stress via the heme oxygenase 1 signaling pathway in vitro studies. Int J Nanomedicine 16:1565

    Article  PubMed Central  PubMed  Google Scholar 

  42. Wang T, Chen X, Long X, Liu Z, Yan S (2016) Copper nanoparticles and copper sulphate induced cytotoxicity in hepatocyte primary cultures of Epinephelus coioides. PLOS ONE 11(2):e0149484

    Article  PubMed Central  PubMed  Google Scholar 

  43. Sharma P, Goyal D, Baranwal M, Chudasama B (2020) ROS-induced cytotoxicity of colloidal copper nanoparticles in MCF-7 human breast cancer cell line: an in vitro study. J Nanopart Res 22(8):1–11

    Article  Google Scholar 

  44. Soenen SJ, Rivera-Gil P, Montenegro J-M, Parak WJ, De Smedt SC, Braeckmans K (2011) Cellular toxicity of inorganic nanoparticles: common aspects and guidelines for improved nanotoxicity evaluation. Nano Today 6(5):446–465

    Article  CAS  Google Scholar 

  45. Knaapen AM, Borm PJ, Albrecht C, Schins RP (2004) Inhaled particles and lung cancer. Part A: Mechanisms Int J Cancer 109(6):799–809

    CAS  Google Scholar 

  46. Abdal Dayem A, Hossain MK, Lee SB, Kim K, Saha SK, Yang GM, et al. (2017) The role of reactive oxygen species (ROS) in the biological activities of metallic nanoparticles. Int J Mol Sci 18(1)

  47. Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M (2006) Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact 160(1):1–40

    Article  CAS  PubMed  Google Scholar 

  48. Seifried HE, McDonald SS, Anderson DE, Greenwald P, Milner JA (2003) The antioxidant conundrum in cancer. Can Res 63(15):4295–4298

    CAS  Google Scholar 

  49. Stone WL, Krishnan K, Campbell SE, Palau VE (2014) The role of antioxidants and pro-oxidants in colon cancer. World J Gastrointest Oncol 6(3):55–66

    Article  PubMed Central  PubMed  Google Scholar 

  50. Canli E, Ila H, Canli M (2019) Response of the antioxidant enzymes of rats following oral administration of metal-oxide nanoparticles (Al2O3, CuO, TiO2). Environ Sci Pollut Res 26

  51. Yang L, Wei Y, Gao S, Wang Q, Chen J, Tang B et al (2022) Effect of copper nanoparticles and ions on epididymis and spermatozoa viability of Chinese soft-shelled turtles Pelodiscus sinensis. Coatings 12(2):110

    Article  CAS  Google Scholar 

  52. Almarzoug MH, Ali D, Alarifi S, Alkahtani S, Alhadheq AM (2020) Platinum nanoparticles induced genotoxicity and apoptotic activity in human normal and cancer hepatic cells via oxidative stress-mediated Bax/Bcl-2 and caspase-3 expression. Environ Toxicol 35(9):930–941

    Article  CAS  PubMed  Google Scholar 

  53. Katifelis H, Lyberopoulou A, Mukha I, Vityuk N, Grodzyuk G, Theodoropoulos GE et al (2018) Ag/Au bimetallic nanoparticles induce apoptosis in human cancer cell lines via P53, CASPASE-3 and BAX/BCL-2 pathways. Artif Cells Nanomed Biotechnol 46(sup3):S389–S398

    Article  PubMed  Google Scholar 

  54. Saquib Q, Siddiqui MA, Ahmad J, Ansari SM, Faisal M, Wahab R, et al. (2018) Nickel oxide nanoparticles induced transcriptomic alterations in HEPG2 cells. Mol Cell Toxicol 163–74

  55. Al-Zharani M, Qurtam AA, Daoush WM, Eisa MH, Aljarba NH, Alkahtani S et al (2021) Antitumor effect of copper nanoparticles on human breast and colon malignancies. Environ Sci Pollut Res 28(2):1587–1595

    Article  CAS  Google Scholar 

  56. Sarkar A, Das J, Manna P, Sil PC (2011) Nano-copper induces oxidative stress and apoptosis in kidney via both extrinsic and intrinsic pathways. Toxicology 290(2):208–217

    Article  PubMed  Google Scholar 

Download references

Funding

This study was funded by the Vice Chancellor for Research and Technology, Hamadan University of Medical Sciences (No: 9911288441).

Author information

Authors and Affiliations

Authors

Contributions

P.Gh. conducted and analyzed laboratory tests. N.Z. interpreted the data. P.Gh. wrote the manuscript. R.A. and Gh.Sh. were project supervisors. All the authors have read and approved the final manuscript.

Corresponding author

Correspondence to Roghayeh Abbasalipourkabir.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

This article does not contain any studies involving human participants or animals performed by any of the authors. The experimental procedure was approved by the Faculty of Medicine of the Hamadan University of Medical Sciences (IR. UMSHA > REC.1399.929).

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Parvin Ghasemi and Gholamreza Shafiee are Equal first author.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 13 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghasemi, P., Shafiee, G., Ziamajidi, N. et al. Copper Nanoparticles Induce Apoptosis and Oxidative Stress in SW480 Human Colon Cancer Cell Line. Biol Trace Elem Res 201, 3746–3754 (2023). https://doi.org/10.1007/s12011-022-03458-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-022-03458-2

Keywords

Navigation