Skip to main content

Advertisement

Log in

Evaluation of the cytotoxic effects of silver-zinc oxide nanoparticles synthesized by green method on sw480 cell line

  • Original Article
  • Published:
Emergent Materials Aims and scope Submit manuscript

Abstract

In recent years, metal nanocomposites (NCs) have widely been studied due to their several applications in therapeutic activities. The current study synthesized silver and zinc oxide nanocomposite (Ag/Zno NCs) by the green method using Artemisia tschernieviana ethanol extract and investigated the physical and chemical properties of Ag/Zno NCs by several instruments. Artemisia tschernieviana extract acted as a reducing/capping agent. Microscopic results revealed that the NCs were agglomerated, mostly spherical in shape, and having an average diameter of 50 nm. The in vitro cytotoxicity of Ag/Zno NCs was evaluated by MTT assay toward human colon cancer cells (SW480) and normal cells (HEK-293–293), and showed dosage-dependent inhibition activity of Ag/Zno NCs. Besides, the MTT results showed that NCs had lower IC50 against SW480 cells compared to the HEK-293–293 cell line. After treatment, the expressions of P53, Caspase-3, Bax, and Bcl-2 in SW480 cells were investigated by quantitative real-time PCR method. Bax, Bcl-2, and caspase-3 genes were highly expressed compared to the control group. In addition, Bax to Bcl-2 proportion was significantly increased in SW480 treated cells and revealed that Ag/Zno NCs can induce apoptosis in this cell line. In conclusion, this study highlighted the anticancer properties of green synthesized Ag/ZnO NCs using Artemisia tschernieviana, suggesting that these NCs had anti-proliferative potential against human colon cancer cell lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets used during the current study are included in this article and additional information are available from the corresponding author on reasonable request.

References

  1. N. Rezaei, I. Akbarzadeh, S. Kazemi, L. Montazeri, I. Zarkesh, N. Hossein-Khannazer, M. Hassan, M. Vosough, Smart materials in regenerative medicine. Mod. Med. Lab. J. 4, 39–51 (2021). https://doi.org/10.30699/mmlj17.4.1.39

    Article  Google Scholar 

  2. J.K. Patra, G. Das, L.F. Fraceto, E.V.R. Campos, M.D.P. Rodriguez-Torres, L.S. Acosta-Torres, L.A. Diaz-Torres, R. Grillo, M.K. Swamy, S. Sharma, S. Habtemariam, H.S. Shin, Nano based drug delivery systems: Recent developments and future prospects 10 Technology 1007 Nanotechnology 03 Chemical Sciences 0306 Physical Chemistry (incl. Structural) 03 Chemical Sciences 0303 Macromolecular and Materials Chemistry 11 Medical and He. J. Nanobiotechnology. 16, 71 (2018). https://doi.org/10.1186/s12951-018-0392-8

    Article  CAS  Google Scholar 

  3. M. Ferrari, Cancer nanotechnology: Opportunities and challenges. Nat. Rev. Cancer. 5, 161–171 (2005). https://doi.org/10.1038/nrc1566

    Article  CAS  Google Scholar 

  4. S. Iravani, Green synthesis of metal nanoparticles using plants. Green Chem. 13, 2638 (2011). https://doi.org/10.1039/c1gc15386b

    Article  CAS  Google Scholar 

  5. A. Sharma, A.K. Goyal, G. Rath, Recent advances in metal nanoparticles in cancer therapy. J. Drug Target. 26, 617–632 (2018). https://doi.org/10.1080/1061186X.2017.1400553

    Article  CAS  Google Scholar 

  6. S. Raj, R. Trivedi, V. Soni, Biogenic synthesis of silver nanoparticles, characterization and their applications—A review. Surfaces. 5, 67–90 (2021). https://doi.org/10.3390/surfaces5010003

    Article  CAS  Google Scholar 

  7. V. Devra, Synthesis of metal nanoparticles by microbes and biocompatible green reagents, in: Agri-Waste Microbes Prod. Sustain. Nanomater., (Elsevier, 2022), pp. 17–45. https://doi.org/10.1016/B978-0-12-823575-1.00013-5.

  8. S. Drummer, T. Madzimbamuto, M. Chowdhury, Green synthesis of transition-metal nanoparticles and their oxides: A review. Materials (Basel). 14, 2700 (2021). https://doi.org/10.3390/ma14112700

    Article  CAS  Google Scholar 

  9. M. Kashi, F. Baghbani, F. Moztarzadeh, H. Mobasheri, E. Kowsari, Green synthesis of degradable conductive thermosensitive oligopyrrole/chitosan hydrogel intended for cartilage tissue engineering. Int. J. Biol. Macromol. 107, 1567–1575 (2018). https://doi.org/10.1016/j.ijbiomac.2017.10.015

    Article  CAS  Google Scholar 

  10. M.E. TaghavizadehYazdi, M. Darroudi, M.S. Amiri, H.A. Hosseini, F. Nourbakhsh, M. Mashreghi, M. Farjadi, S.M. Mousavi Kouhi, S.H. Mousavi, Anticancer, antimicrobial, and dye degradation activity of biosynthesised silver nanoparticle using Artemisia kopetdaghensis. Micro. Nano. Lett. 15, 1046–1050 (2020). https://doi.org/10.1049/mnl.2020.0387

    Article  CAS  Google Scholar 

  11. F. Baghbani-Arani, R. Movagharnia, A. Sharifian, S. Salehi, S.A.S. Shandiz, Photo-catalytic, anti-bacterial, and anti-cancer properties of phyto-mediated synthesis of silver nanoparticles from Artemisia tournefortiana Rchb extract. J. Photochem. Photobiol. B Biol. 173, 640–649 (2017). https://doi.org/10.1016/j.jphotobiol.2017.07.003

    Article  CAS  Google Scholar 

  12. H.M. Mehwish, M.S.R. Rajoka, Y. Xiong, H. Cai, R.M. Aadil, Q. Mahmood, Z. He, Q. Zhu, Green synthesis of a silver nanoparticle using Moringa oleifera seed and its applications for antimicrobial and sun-light mediated photocatalytic water detoxification. J. Environ. Chem. Eng. 9, 105290 (2021). https://doi.org/10.1016/j.jece.2021.105290

    Article  CAS  Google Scholar 

  13. R. Canaparo, F. Foglietta, T. Limongi, L. Serpe, Biomedical applications of reactive oxygen species generation by metal nanoparticles. Materials (Basel). 14, 53 (2020). https://doi.org/10.3390/ma14010053

    Article  CAS  Google Scholar 

  14. J. Sun, J. Wan, X. Zhai, J. Wang, Z. Liu, H. Tian, L. Xin, Silver nanoparticles: Correlating particle size and ionic Ag release with cytotoxicity, genotoxicity, and inflammatory responses in human cell lines. Toxicol. Ind. Health. 37, 198–209 (2021). https://doi.org/10.1177/0748233721996561

    Article  CAS  Google Scholar 

  15. N. Jain, P. Jain, D. Rajput, U.K. Patil, Green synthesized plant-based silver nanoparticles: Therapeutic prospective for anticancer and antiviral activity. Micro Nano Syst. Lett. 9, 5 (2021). https://doi.org/10.1186/s40486-021-00131-6

    Article  Google Scholar 

  16. S. Jabeen, R. Qureshi, M. Munazir, M. Maqsood, M. Munir, S.S.H. Shah, B.Z. Rahim, Application of green synthesized silver nanoparticles in cancer treatment—A critical review. Mater. Res. Express. 8, 092001 (2021). https://doi.org/10.1088/2053-1591/ac1de3

    Article  CAS  Google Scholar 

  17. S. Anjum, M. Hashim, S.A. Malik, M. Khan, J.M. Lorenzo, B.H. Abbasi, C. Hano, Recent advances in zinc oxide nanoparticles (ZnO NPs) for cancer diagnosis, target drug delivery, and treatment. Cancers (Basel). 13, 4570 (2021). https://doi.org/10.3390/cancers13184570

    Article  CAS  Google Scholar 

  18. D.S. ArumaiSelvan, M. Keerthi, S. Murugesan, S. Shobana, B. Lakshmi, V. Veena, A.K. Rahiman, In vitro cytotoxicity efficacy of phytosynthesized Ag/ZnO nanocomposites using Murraya koenigii and Zingiber officinale extracts. Mater. Chem. Phys. 272, 124903 (2021). https://doi.org/10.1016/j.matchemphys.2021.124903

    Article  CAS  Google Scholar 

  19. L.-Y. Wang, M.-Q. Wang, C.-B. Yao, H.-T. Yin, X.-J. Liu, B.-Y. Shi, Two-step strategy, growth mechanism and optical properties of plasmonic Ag-modified ZnO nanomaterials. RSC. Adv. 12, 3013–3026 (2022). https://doi.org/10.1039/D1RA09457B

    Article  CAS  Google Scholar 

  20. R. Javed, M. Zia, S. Naz, S.O. Aisida, N. ul Ain, Q. Ao, Role of capping agents in the application of nanoparticles in biomedicine and environmental remediation: recent trends and future prospects. J. Nanobiotechnology. 18, 172 (2020). https://doi.org/10.1186/s12951-020-00704-4

    Article  Google Scholar 

  21. S.M. Mousavi-Kouhi, A. Beyk-Khormizi, M.S. Amiri, M. Mashreghi, M.E. TaghavizadehYazdi, Silver-zinc oxide nanocomposite: From synthesis to antimicrobial and anticancer properties. Ceram. Int. 47, 21490–21497 (2021). https://doi.org/10.1016/j.ceramint.2021.04.160

    Article  CAS  Google Scholar 

  22. Y. Dong, Y. Yang, Y. Wei, Y. Gao, W. Jiang, G. Wang, D. Wang, Facile synthetic nano-curcumin encapsulated Bio-fabricated nanoparticles induces ROS-mediated apoptosis and migration blocking of human lung cancer cells. Process Biochem. 95, 91–98 (2020). https://doi.org/10.1016/j.procbio.2020.05.011

    Article  CAS  Google Scholar 

  23. T. Zhang, E. Du, Y. Liu, J. Cheng, Z. Zhang, Y. Xu, S. Qi, Y. Chen, Anticancer effects of zinc oxide nanoparticles through altering the methylation status of histone on bladder cancer cells. Int. J. Nanomedicine. 15, 1457–1468 (2020). https://doi.org/10.2147/IJN.S228839

    Article  CAS  Google Scholar 

  24. M.E. TaghavizadehYazdi, M.S. Amiri, S. Akbari, M. Sharifalhoseini, F. Nourbakhsh, M. Mashreghi, M.R. EhsanYousefi, M. Abbasi, A.. Es.-haghi Modarres, Green synthesis of silver nanoparticles using Helichrysum graveolens for biomedical applications and wastewater treatment. Bionanoscience. 10, 1121–1127 (2020). https://doi.org/10.1007/s12668-020-00794-2

    Article  Google Scholar 

  25. R. Cohan, A. Shoari, F. Baghbani-Arani, A.S. Shandiz, M.S. Khosravy, A. Janani, R. Bigdeli, R. Bashar, V. Asgary, Green synthesis and evaluation of silver nanoparticles as adjuvant in rabies veterinary vaccine. Int. J. Nanomedicine. 11, 3597–3605 (2016). https://doi.org/10.2147/IJN.S109098

    Article  Google Scholar 

  26. H. Khalili, F. Baghbani-arani, Green synthesized of silver nanoparticles using Artemisia tschernieviana extract and evaluation of cytotoxicity effects on human colon cancer (HT29) and normal (HEK293) cell lines. J. Ilam Univ. Med. Sci. 25, 91–100 (2017). https://doi.org/10.29252/sjimu.25.2.91

    Article  Google Scholar 

  27. X. Liu, Millimeter wave treatment induces apoptosis via activation of the mitochondrial-dependent pathway in human osteosarcoma cells. Int. J. Oncol. (2012). https://doi.org/10.3892/ijo.2012.1330

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

F. B. designed and supervised the study. R. H. performed the experiments and M. M. O. and N. R. participated in analysis, interpretation of data, and paper writing. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Fahimeh Baghbani-Arani.

Ethics declarations

Ethics approval

Not applicable.

Competing interests

The authors declare no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Helalat, R., Masoumeh, MO., Rezaei, N. et al. Evaluation of the cytotoxic effects of silver-zinc oxide nanoparticles synthesized by green method on sw480 cell line. emergent mater. 6, 291–298 (2023). https://doi.org/10.1007/s42247-022-00413-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42247-022-00413-8

Keywords

Navigation