Skip to main content
Log in

Longer-Term Adverse Effects of Selenate Exposures on Hematological and Serum Biochemical Variables in Air-Breathing Fish Channa punctata (Bloch, 1973) and Non-air Breathing Fish Ctenopharyngodon Idella (Cuvier, 1844): an Integrated Biomarker Response Approach

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

To examine the spectrum of selenium toxicity between hardy and less hardy species of the same life stages, short-term and longer-term exposures in juvenile air-breathing fish Channa punctata (Bloch, 1973) and non-air-breathing fish Ctenopharyngodon idella (Cuvier, 1844) were assessed. Acute exposures revealed a greater 96-h median lethal concentration (LC50) for C. punctata (14.67 mg/l) compared to C. idella (7.98 mg/l). During their chronic exposure, both fishes’ hemoglobin content (Hb), red blood cells (RBC), and hematocrit (HCT) markedly decreased (p < 0.05), although their clotting time (CT) significantly increased. At 96 h, immune-modulation was observed where total protein and serum globulin levels in both fishes considerably decreased (p < 0.05) compared to the first exposure at 0 days, although total glucose, triglyceride, cholesterol, and albumin levels in both fishes significantly increased (p < 0.05) at 30 days. The lower cholesterol levels in C. punctata compared to C. idella are suggestive of a disrupted cholesterol transformation pathway. The greater total protein, triglyceride, albumin, and globulin levels in C. punctata compared to C. idella are suggestive of a comparatively robust immune capacity. In essence, selenium toxicity in the wild could manifest as disrupted metabolic pathways and downregulated immune capacity for less hardy species. In general, both fish species displayed significant alterations in their hematological and biochemical responses with increased exposure duration and elevated toxicant concentrations. This comparative investigation could improve the knowledge-spectrum of selenium toxicity in the wild as well as an understanding of secondary stress responses critically evident in hematological and biochemical parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Code Availability

Not applicable.

References

  1. Saha S, Chukwuka AV, Mukherjee D, Saha NC, Adeogun AO (2022) Hydrological connectivity, surface water quality and distribution of fish species within sub-locations of an urban oxbow lake, East India. Watershed Ecology and the Environment 4:44–58

    Article  Google Scholar 

  2. Okonji SO, Achari G, Pernitsky D (2021) Environmental impacts of selenium contamination: a review on current-issues and remediation strategies in an aqueous system. Water 13(11):1473

    Article  CAS  Google Scholar 

  3. Gopi N et al (2021) Interactive effects of freshwater acidification and selenium pollution on biochemical changes and neurotoxicity in Oreochromis mossambicus. Comp Biochem Physiol C: Toxicol Pharmacol 250:109161

    CAS  PubMed  Google Scholar 

  4. Gobi N et al (2018) Bioaccumulation, cytotoxicity and oxidative stress of the acute exposure selenium in Oreochromis mossambicus. Ecotoxicol Environ Saf 162:147–159

    Article  CAS  PubMed  Google Scholar 

  5. Wen H, Carignan J (2007) Reviews on atmospheric selenium: emissions, speciation and fate. Atmos Environ 41(34):7151–7165

    Article  CAS  Google Scholar 

  6. Young TF, Finley K, Adams WJ, Besser J, Hopkins WD, Jolley D, McNaughton E, Presser TS, Shaw DP, Unrine J (2010) Appendix A: Selected case studies of ecosystem contamination by Se. Ecological Assessment of Selenium in the Aquatic Environment 257–292

  7. Maher B et al (2010) Environmental sources, speciation and partitioning of selenium. Ecological assessment of selenium in the aquatic environment. Taylor & Francis, pp 47–92

    Chapter  Google Scholar 

  8. Adams WJ et al (2015) Long-term monitoring of arsenic, copper, selenium, and other elements in Great Salt Lake (Utah, USA) surface water, brine shrimp, and brine flies. Environ Monit Assess 187(3):1–13

    Article  CAS  Google Scholar 

  9. Chapman PM et al (2010) Ecological assessment of selenium in the aquatic environment. CRC Press

    Book  Google Scholar 

  10. George MW, Wagner LA (2009) Selenium recycling in the United States in 2004, chap. T of Sibley, S.R., Flow studies for recycling metal commodities in the United States: U.S. Geological Survey Circular 1196–T, p T1–T7

  11. Lemly AD (2004) Aquatic selenium pollution is a global environmental safety issue. Ecotoxicol Environ Saf 59(1):44–56

    Article  CAS  PubMed  Google Scholar 

  12. Dhara K et al (2021) Effects of short-term selenium exposure on respiratory activity and proximate body composition of early-life stages of Catla catla, Labeo rohita and Cirrhinus mrigala. Environ Toxicol Pharmacol 1:103805

    Google Scholar 

  13. Fordyce FM (2013) Selenium deficiency and toxicity in the environment. Essentials of medical geology. Springer, pp 375–416

    Chapter  Google Scholar 

  14. Lindh U (2013) Biological functions of the elements. Essentials of medical geology. Springer, pp 129–177

    Chapter  Google Scholar 

  15. Sharma VK et al (2017) Assessment of toxicity of selenium and cadmium selenium quantum dots: a review. Chemosphere 188:403–413

    Article  CAS  PubMed  Google Scholar 

  16. Quinnell S, Hulsman K, Davie PJ (2004) Protein model for pollutant uptake and elimination by living organisms and its implications for ecotoxicology. Mar Ecol Prog Ser 274:1–16

    Article  CAS  Google Scholar 

  17. Janz DM et al (2010) Selenium toxicity to aquatic organisms. Ecological assessment of selenium in the aquatic environment 141–231

  18. Dhara K, Chukwuka AV, Saha S, Saha NC, Faggio C (2022) Effects of short-term selenium exposure on respiratory activity and proximate body composition of early-life stages of Catla catla, Labeo rohita and Cirrhinus mrigala. Environ Toxicol Pharmacol 90:103805

  19. Chrousos GP (2009) Stress and disorders of the stress system. Nat Rev Endocrinol 5(7):374–381

    Article  CAS  PubMed  Google Scholar 

  20. Bonga SW (1997) The stress response in fish. Physiol Rev 77(3):591–625

    Article  Google Scholar 

  21. Rebl A, Seibel H, Baßmann B (2021) Blood will tell: what hematological analyses can reveal about fish welfare. Front Vet Sci 8:194

    Google Scholar 

  22. Oberle B, Bringezu S, Hatfield-Dodds S, Hellweg S, Schandl H, Clement J (2019) Global resources outlook: International Resource Panel, United Nations Envio, Paris, France, p 162

  23. Jerome FC, Hassan A, Chukwuka AV (2020) Metalloestrogen uptake, antioxidant modulation and ovotestes development in Callinectes amnicola (blue crab): a first report of crustacea intersex in the Lagos lagoon (Nigeria). Sci Total Environ 704:135235

    Article  CAS  PubMed  Google Scholar 

  24. Saha S, Chukwuka AV, Mukherjee D, Dhara K, Adeogun AO, Saha NC (2022) Effects of short-term sub-lethal diazinon® exposure on behavioural patterns and respiratory function in Clarias batrachus: inferences for adaptive capacity in the wild. Chem Ecol 38(2):180–194

    Article  CAS  Google Scholar 

  25. APHA (2012) Standard Methods for the Examination of Water and Waste Water. 22nd Edition, American Public Health Association, American Water Works Association, Water Environment Federation. p 541

  26. USEPA IRIS (2011) Integrated risk information system. Environmental protection agency region I, Washington DC, 20460. http://www.epa.gov/iris/

  27. Finney D (1971) Statistical logic in the monitoring of reactions to therapeutic drugs. Methods Inf Med 10(04):237–245

    Article  CAS  PubMed  Google Scholar 

  28. Gomez KA, Gomez AA (1984) Statistical procedures for agricultural research. Wiley

    Google Scholar 

  29. Haider MJ, Rauf A (2014) Sub-lethal effects of diazinon on hematological indices and blood biochemical parameters in Indian carp, Cirrhinus mrigala (Hamilton). Braz Arch Biol Technol 57:947–953

    Article  CAS  Google Scholar 

  30. Rambhaskar B, Srinivasa Rao K (1987) Comparative haematology of ten species of marine fish from Visakhapatnam Coast. J Fish Biol 30(1):59–66

    Article  Google Scholar 

  31. Mayer G (1955) A method for the reliable determination of clotting time in whole blood. Can Med Assoc J 72(12):927

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Pal GK (2006) Textbook of practical physiology. Vol, 2nd edn. Orient Blackswan, p 456

  33. Lewis SM et al (2006) Dacie and Lewis Practical Haematology, 10th edn. Philadelphia: Churchill Livingstone, p 271

  34. Saha S et al (2021) Chronic effects of Diazinon® exposures using integrated biomarker responses in freshwater walking catfish, Clarias batrachus. Appl Sci 11(22):10902

    Article  CAS  Google Scholar 

  35. Blaxhall P, Daisley K (1973) Routine haematological methods for use with fish blood. J Fish Biol 5(6):771–781

    Article  Google Scholar 

  36. Chen H et al (2019) Hematological analysis of Ctenopharyngodon idella, Megalobrama amblycephala and Pelteobagrus fulvidraco: Morphology, ultrastructure, cytochemistry and quantification of peripheral blood cells. Fish Shellfish Immunol 90:376–384

    Article  CAS  PubMed  Google Scholar 

  37. Casanovas P et al (2021) Comparative assessment of blood biochemistry and haematology normal ranges between Chinook salmon (Oncorhynchus tshawytscha) from seawater and freshwater farms. Aquaculture 537:736464

    Article  CAS  Google Scholar 

  38. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1–2):248–254

    Article  CAS  PubMed  Google Scholar 

  39. Ha MS, Cho SH, Kim T (2021) Dietary substitution of fish meal by meat meal: Effects on juvenile olive flounder (Paralichthys olivaceus) growth performance, feed utilization, haematology, biochemical profile and disease resistance against Streptococcus iniae. Aquac Nutr 27(6):1888–1902

    Article  CAS  Google Scholar 

  40. Beliaeff B, Burgeot T (2002) Integrated biomarker response: a useful tool for ecological risk assessment. Environ Toxicol Chem 21(6):1316–1322

    Article  CAS  PubMed  Google Scholar 

  41. Saha S, Chukwuka AV, Mukherjee D, Dhara K, Pal P, Saha NC (2022) Physiological (haematological, growth and endocrine) and biochemical biomarker responses in air-breathing catfish, Clarias batrachus under long-term Captan® pesticide exposures. Environ Toxicol Pharmacol 90:103815

  42. Samanta P et al (2018) Ecological risk assessment of a contaminated stream using multi-level integrated biomarker response in Carassius auratus. Environ Pollut 233:429–438

    Article  CAS  PubMed  Google Scholar 

  43. Odedeyi DO, Odo KE (2017) Acute toxicity and haematology of Clarias gariepinus exposed to selenium. International Journal of Aquaculture 7(9):64–70

    Google Scholar 

  44. Adeogun AO, Ibor OR, Chukwuka AV (2013) Acute toxicity of abattoir and saw-mill effluents to juvenile-sized Clarias gariepinus. Zool Ecol 23(1):53–57

    Article  Google Scholar 

  45. Adeogun AO, Chukwuka AV (2012) Toxicity of industrial wastewater acting singly or in joint-ratios on Clarias gariepinus. Am J Environ Sci 8(4):366–375

    Article  CAS  Google Scholar 

  46. Kumar N, Krishnani KK, Singh NP (2018) Comparative study of selenium and selenium nanoparticles with reference to acute toxicity, biochemical attributes, and histopathological response in fish. Environ Sci Pollut Res 25(9):8914–8927

    Article  CAS  Google Scholar 

  47. Cardwell R et al (1976) Acute toxicity of selenium dioxide to freshwater fishes. Arch Environ Contam Toxicol 4(1):129–144

    Article  CAS  PubMed  Google Scholar 

  48. Kishore D, Shubhajit S, Chukwuka AV et al (2022) Behavioural toxicity and respiratory distress in early life and adult stage of walking catfish Clarias batrachus (Linnaeus) under acute fluoride exposures. Toxicol Environ Health Sci 14:33–46. https://doi.org/10.1007/s13530-021-00115-4

  49. Saha S, Mukherjee D, Saha NC (2018) Evaluation of acute toxicity and behavioral responses of Heteropneustes fossilis (Linn.) exposed to Captan. Int J Life Sci 6(1):205–208

    Google Scholar 

  50. Singh KA, Williams GH (eds) (2009) Textbook of nephro-endocrinology, 2nd edn. Academic Press, New York, p 584

  51. Nagababu E et al (2008) Iron-deficiency anaemia enhances red blood cell oxidative stress. Free Radic Res 42(9):824–829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Khattab N et al (2021) The efficiency of Sclerophrys regularis as a bioindicator. Egypt Acad J Biol Sci B Zool 13(1):91–101

    Article  Google Scholar 

  53. Modra H, Svobodova Z, Kolářová J (1998) Comparison of differential leukocyte counts in fish of economic and indicator importance. Acta Vet Brno 67(4):215–226

    Article  Google Scholar 

  54. Remyla SR et al (2008) Influence of zinc on cadmium induced haematological and biochemical responses in a freshwater teleost fish Catla catla. Fish Physiol Biochem 34(2):169–174

    Article  CAS  PubMed  Google Scholar 

  55. Kavitha C et al (2010) Toxicological effects of arsenate exposure on hematological, biochemical and liver transaminases activity in an Indian major carp, Catla catla. Food Chem Toxicol 48(10):2848–2854

    Article  CAS  PubMed  Google Scholar 

  56. Witeska M, Kościuk B (2003) The changes in common carp blood after short-term zinc exposure. Environ Sci Pollut Res 10(5):284–286

    Article  CAS  Google Scholar 

  57. Ovie K-S, Ikomi U (2011) Alterations in some haematological parameters of the African Snakehead: Parachanna africans exposed to cadmium. Notulae Scientia Biologicae 3(4):29–34

    Article  Google Scholar 

  58. Al-Otaibi A et al (2018) Toxicity bioassay and sub-lethal effects of diazinon on blood profile and histology of liver, gills and kidney of catfish, Clarias gariepinus. Braz J Biol 79:326–336

    Article  PubMed  Google Scholar 

  59. Shamoushaki MMN et al (2012) Effects of organophosphate, diazinon on some haematological and biochemical changes in Rutilus frisii kutum (Kamensky, 1901) male brood stocks. Iran J Fish Sci 11(1):105–117

    Google Scholar 

  60. Rauf A, Arain N (2013) Acute toxicity of diazinon and its effects on hematological parameters in the Indian carp, Cirrhinus mrigala (Hamilton). Turkish J Vet Anim Sci 37(5):535–540

    Article  CAS  Google Scholar 

  61. Khoshbavar-Rostami H, Soltani M, Hassan H (2004) Acute toxicity and some haematological and biochemical changes in giant sturgeon (Huso huso) exposed to diazinon. Bull Eur Assoc Fish Pathol 24(2):92–99

    Google Scholar 

  62. Rather IA et al (2017) The sources of chemical contaminants in food and their health implications. Front Pharmacol 8:830

    Article  PubMed  PubMed Central  Google Scholar 

  63. Javed M, Usmani N (2013) Haematological indices of Channa punctatus as an indicator of heavy metal pollution in waste water aquaculture pond, Panethi, India. Afr J Biotechnol 12(5):520–525

    Article  CAS  Google Scholar 

  64. Shah SL, Altindağ A (2005) Alterations in the immunological parameters of Tench (Tinca tinca L. 1758) after acute and chronic exposure to lethal and sublethal treatments with mercury, cadmium and lead. Turk J Vet Anim Sci 29(5):1163–1168

    CAS  Google Scholar 

  65. Vosylienė MZ (1999) The effect of heavy metals on haematological indices of fish (survey). Acta Zool Litu 9(2):76–82

    Article  Google Scholar 

  66. Witeska M, Jezierska B, Wolnicki J (2006) Respiratory and hematological response of tench, Tinca tinca (L.) to a short-term cadmium exposure. Aquac Int 14(1):141–152

    Article  CAS  Google Scholar 

  67. Wuana RA, Okieimen FE (2011) Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. Int Scholar Res Notices 2011:1

    Google Scholar 

  68. Malathi K, Kannathasan A, Rajendran K (2012) Comparative haematological studies on fresh water fishes Channa punctatus and Channa striatus (Bloch). Int J Pharm Chem Biol Sci 2(4):644–648

    CAS  Google Scholar 

  69. Hidayati NV et al (2020) Assessment of the ecological and human health risks from metals in shrimp aquaculture environments in Central Java, Indonesia. Environ Sci Pollut Res 27(33):41668–41687

    Article  CAS  Google Scholar 

  70. Dhara K et al (2021) Comparative acute toxicity of mercury to air breathing fish, Channa gachua (Ham.) and non-air breathing fish Cyprinus carpio (Linn.): Ethological and Haematological Consideration. Indian J Ecol 48(5):1243–1253

    Google Scholar 

  71. Uyanik F, Eren M, Tunçoku G (2001) Effects of supplemental zinc on growth, serum glucose, cholesterol, enzymes and minerals in broilers. Pak J Biol Sci 4:745–747

    Article  Google Scholar 

  72. Martin P, Prasath D, Arivoli S (2008) Biochemical study of freshwater fish Catla catla with reference to mercury chloride. Iran J Environ Health Sci Eng 5(2):109–116

    Google Scholar 

  73. des Santos Carvalho C, Fernandes MN (2008) Effect of copper on liver key enzymes of anaerobic glucose metabolism from freshwater tropical fish Prochilodus lineatus. Comp Biochem Physiol A Mol Integr Physiol 151(3):437–442

    Article  Google Scholar 

  74. Öner M, Atli G, Canli M (2008) Changes in serum biochemical parameters of freshwater fish Oreochromis niloticus following prolonged metal (Ag, Cd, Cr, Cu, Zn) exposures. Environ Toxicol Chem 27(2):360–366

    Article  PubMed  Google Scholar 

  75. Cicik B, Engin K (2005) The effects of cadmium on levels of glucose in serum and glycogen reserves in the liver and muscle tissues of Cyprinus carpio (L., 1758). Turk J Vet Anim Sci 29(1):113–117

    CAS  Google Scholar 

  76. Mohamed F, Gad N (2008) Environmental pollution-induced biochemical changes in tissues of Tilapia zillii, Solea vulgaris and Mugil capito from Lake Qarun, Egypt. Glob Vet 2(6):327–336

    Google Scholar 

  77. Kumari B et al (2017) Toxicology of arsenic in fish and aquatic systems. Environ Chem Lett 15(1):43–64

    Article  CAS  Google Scholar 

  78. Jaheed E (2021) Study of blood serum biochemical profile and pathological changes in haemonchosis experimentally induced in goats. Am J BioSci 9(3):95

    Article  CAS  Google Scholar 

  79. Arvind A et al (2019) Lipid and lipoprotein metabolism in liver disease. Feingold KR, Anawalt B, Boyce A et al (eds) MDText.com, Inc., South Dartmouth

  80. Javed M et al (2017) Multiple biomarker responses (serum biochemistry, oxidative stress, genotoxicity and histopathology) in Channa punctatus exposed to heavy metal loaded waste water. Sci Rep 7(1):1–11

    Article  CAS  Google Scholar 

  81. Fırat Ö, Kargın F (2010) Individual and combined effects of heavy metals on serum biochemistry of Nile tilapia Oreochromis niloticus. Arch Environ Contam Toxicol 58(1):151–157

    Article  PubMed  Google Scholar 

  82. Zhang J, Spallholz JE (2009) Toxicity of selenium compounds and nano-selenium particles. General, Applied and Systems Toxicology, p 15

  83. Bunglavan SJ, Garg AK, Dass RS, Shrivastava S (2014) Effect of supplementation of different levels of selenium as nanoparticles/sodium selenite on blood biochemical profile and humoral immunity in male Wistar rats. Vet World 7(12):1075–1081

    Article  Google Scholar 

  84. Desai I, Scott M (1965) Mode of action of selenium in relation to biological activity of tocopherols. Arch Biochem Biophys 110(2):309–315

    Article  CAS  PubMed  Google Scholar 

  85. Lemly AD (1998) Pathology of selenium poisoning in fish. Environmental Chemistry of Selenium. Marcel Dekker, New York, pp 281–296

    Google Scholar 

  86. Lemly AD (1999) Selenium transport and bioaccumulation in aquatic ecosystems: a proposal for water quality criteria based on hydrological units. Ecotoxicol Environ Saf 42(2):150–156

    Article  CAS  PubMed  Google Scholar 

  87. Lugert V, Steinhagen D, Reiser S (2020) Lack of knowledge does not justify a lack of action: the case for animal welfare in farmed fish. J Sustain Organ Agric Syst 70:31–34

    Google Scholar 

  88. Rebl A et al (2017) Microarray-predicted marker genes and molecular pathways indicating crowding stress in rainbow trout (Oncorhynchus mykiss). Aquaculture 473:355–365

    Article  CAS  Google Scholar 

  89. Near TJ et al (2013) Phylogeny and tempo of diversification in the superradiation of spiny-rayed fishes. Proc Natl Acad Sci 110(31):12738–12743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Schreck CB et al (2016) Biology of stress in fish, 1st edn. Academic Press, p 602

  91. Collins S et al (2016) A comparison of blood gases, biochemistry, and hematology to ecomorphology in a health assessment of pinfish (Lagodon rhomboides). PeerJ 4:e2262

    Article  PubMed  PubMed Central  Google Scholar 

  92. Fazio F et al (2013) Comparative study of the biochemical and haematological parameters of four wild Tyrrhenian fish species. Vet Med 58(11):576–581

    Article  CAS  Google Scholar 

  93. Wilson R (1994) Utilization of dietary carbohydrate by fish. Aquaculture 124(1–4):67–80

    Article  CAS  Google Scholar 

  94. Dhara K, Saha S, Pal P, Chukwuka AV, Panigrahi AK, Saha NC, Faggio C (2022) Biochemical, physiological (haematological, oxygen-consumption rate) and behavioural effects of mercury exposures on the freshwater snail, Bellamya bengalensis. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 251:109195

  95. Morgado RG et al (2018) Joint effects of chlorpyrifos and mancozeb on the terrestrial isopod Porcellionides pruinosus: a multiple biomarker approach. Environ Toxicol Chem 37(5):1446–1457

    Article  CAS  PubMed  Google Scholar 

  96. Serafim A et al (2012) Application of an integrated biomarker response index (IBR) to assess temporal variation of environmental quality in two Portuguese aquatic systems. Ecol Ind 19:215–225

    Article  CAS  Google Scholar 

  97. Pal S et al (2018) Acute toxicity and oxidative stress responses in tadpole of skittering frog, Euphlyctis cyanophlyctis (Schneider, 1799) to Sodium Fluoride Exposure. Bull Environ Contam Toxicol 100(2):202–207

    Article  CAS  PubMed  Google Scholar 

  98. Nayak S, Dash SN, Pati SS, Priyadarshini P, Patnaik L (2021) Lipid peroxidation and antioxidant levels in Anabas testudineus (Bloch) under naphthalene (PAH) stress. Aquac Res 52(11):5739–5749

    Article  CAS  Google Scholar 

  99. Presser TS, Sylvester MA, Low WH (1994) Bioaccumulation of selenium from natural geologic sources in western states and its potential consequences. Environ Manag 18(3):423–436

    Article  Google Scholar 

  100. Mason R et al (2000) Factors controlling the bioaccumulation of mercury, methylmercury, arsenic, selenium, and cadmium by freshwater invertebrates and fish. Arch Environ Contam Toxicol 38(3):283–297

    Article  CAS  PubMed  Google Scholar 

  101. Fan TW-M et al (2002) Selenium biotransformations into proteinaceous forms by foodweb organisms of selenium-laden drainage waters in California. Aquat Toxicol 57(1–2):65–84

    Article  CAS  PubMed  Google Scholar 

  102. Debruyn AM, Chapman PM (2007) Selenium toxicity to invertebrates: will proposed thresholds for toxicity to fish and birds also protect their prey? Environ Sci Technol 41(5):1766–1770

    Article  CAS  PubMed  Google Scholar 

  103. Gouget B et al (2005) Resistance, accumulation and transformation of selenium by the cyanobacterium Synechocystis sp. PCC 6803 after exposure to inorganic SeVI or SeIV. Radiochim Acta 93(11):683–689

    Article  CAS  Google Scholar 

  104. Liu DL et al (1987) Selenium content of marine food chain organisms from the coast of China. Mar Environ Res 22(2):151–165

    Article  CAS  Google Scholar 

  105. Orr PL, Guiguer KR, Russel CK (2006) Food chain transfer of selenium in lentic and lotic habitats of a western Canadian watershed. Ecotoxicol Environ Saf 63(2):175–188

    Article  CAS  PubMed  Google Scholar 

  106. Lemly AD (1996) Assessing the toxic threat of selenium to fish and aquatic birds. Environ Monit Assess 43(1):19–35

    Article  CAS  PubMed  Google Scholar 

  107. Ohlendorf HM, Hothem RL, Welsh D (1989) Nest success, cause-specific nest failure, and hatchability of aquatic birds at selenium-contaminated Kesterson Reservoir and a reference site. Condor 91(4):787–796

    Article  Google Scholar 

  108. Adams WJ et al (2003) Analysis of field and laboratory data to derive selenium toxicity thresholds for birds. Environ Toxicol Chem 22(9):2020–2029

    Article  CAS  PubMed  Google Scholar 

  109. Kuchapski KA (2013) Effects of selenium and other surface coal mine influences on fish and invertebrates in Canadian Rockies streams. University of Lethbridge, Dept. of Biological Sciences, Lethbridge

Download references

Acknowledgements

The authors are grateful to the Department of Zoology at Barasat Government College and The University of Burdwan for providing lab space and infrastructure for this study. The authors are also grateful to the West Bengal Government’s Directorate of Fisheries for allowing one of the authors (Dr. K. Dhara) to conduct the experiment.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: SS, KD, and NCS; methodology: SS and KD; software: SS and PP; formal analysis: SS and AVC; investigation, SS and KD; resources, NCS and KD; data curation, SS and AVC; writing—original draft preparation: SS and AVC; writing—review and editing: SS and AVC; supervision: NCS. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Caterina Faggio.

Ethics declarations

Ethics Approval

Throughout the experimental period, all ethical concerns were met as per the regulation provided by the Institutional Biosafety Committee—The University of Burdwan (BU/IBSC/20/Zo/34).

Consent to Participate

Not applicable.

Consent for Publication

The manuscript has never been published in other journals.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 67 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saha, S., Dhara, K., Pal, P. et al. Longer-Term Adverse Effects of Selenate Exposures on Hematological and Serum Biochemical Variables in Air-Breathing Fish Channa punctata (Bloch, 1973) and Non-air Breathing Fish Ctenopharyngodon Idella (Cuvier, 1844): an Integrated Biomarker Response Approach. Biol Trace Elem Res 201, 3497–3512 (2023). https://doi.org/10.1007/s12011-022-03449-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-022-03449-3

Keywords

Navigation