Skip to main content
Log in

A multi-biomarker approach to lambda-cyhalothrin effects on the freshwater teleost matrinxa Brycon amazonicus: single-pulse exposure and recovery

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Effects of the pyrethroid lambda-cyhalothrin (LCH) were investigated in matrinxa Brycon amazonicus, a non-target freshwater teleost. The fish were submitted to a single-pulse exposure (10% of LC50; 96 h, 0.65 μg L−1), followed by 7 days of recovery in clean water. Hematologic parameters indicated impairments in oxygen transport, which were not recovered. Plasma [Na+], [Cl], and protein were diminished, and only [Na+] remained low after recovery. Gill Na+/K+ATPase activity was increased and recovered to basal values. Brain acetylcholinesterase activity was not responsive to LCH. Liver ascorbic acid concentration was not altered, and reduced glutathione levels remained augmented even after recovery. LCH inhibited hepatic superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activities, while glutathione-S-transferase (GST) and glucose-6-phosphate dehydrogenase (G6PDH) activities were steady. After recovery, SOD remained low, and GPx was augmented. Liver depicted lipid peroxidation, which was not observed after recovery. Hepatic morphology was affected by LCH and was not completely recovered. These responses, combined with the persistence of changes even after recovery span, clearly show the feasibility of these biomarkers in evaluating LCH toxic potential to non-target organisms, highlighting the importance of pyrethroids’ responsible use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abdelkhalek NKM, Ghazy EW, Abdel-Daim MM (2015) Pharmacodynamic interaction of Spirulina platensis and deltamethrin in freshwater fish Nile tilapia, Oreochromis niloticus: impact on lipid peroxidation and oxidative stress. Environ Sci Pollut Res 22:3023–3031

    Article  CAS  Google Scholar 

  • Akaishi FM, Silva de Assis HC, Jakobi SCG, Eiras-Stofella DR, St-Jean SD, Courtenay SC, Lima EF, Wagener ALR, Scofield AL, Oliveira Ribeiro CA (2004) Morphological and neurotoxicological findings in tropical freshwater fish (Astyanax sp.) after waterborne and acute exposure to water soluble fraction (WSF) of crude oil. Arch Environ Contam Toxicol 46:244–253

    CAS  PubMed  Google Scholar 

  • APHA (1980) Standard methods for the examination of water and wastewater, 16th edn. American Public Health Association, Washington

    Google Scholar 

  • Avilez IM, Aguiar LH, Hori TS, Moraes G (2013) Metabolic responses of matrinxã, Brycon amazonicus (Spix & Agassiz, 1829), exposed to environmental nitrite. Aquaculture 44:596–603

    Article  CAS  Google Scholar 

  • Aznar-Alemany O, Eljarrat E, Barceló D (2017) Effect of pyrethroid treatment against sea lice in salmon farming regarding consumers’ health. Food Chem Toxicol 105:347–354

    Article  CAS  PubMed  Google Scholar 

  • Bacchetta C, Rossi A, Ale A, Campana M, Parma MJ, Cazenave J (2014) Combined toxicological effects of pesticides: a fish multi-biomarker approach. Ecol Indic 36:532–538

    Article  CAS  Google Scholar 

  • Bagnyukova TV, Chahrak OI, Luschak VI (2006) Coordinated response of goldfish antioxidant defenses to environmental stress. Aquat Toxicol 78:325–331

    Article  CAS  PubMed  Google Scholar 

  • Begum G (2009) Enzymes as biomarkers of cypermethrin toxicity: response of Clarias batrachus tissues ATPase and glycogen phosphorylase as a function of exposure and recovery at sublethal level. Toxicol Mech Method 19:29–39

    Article  CAS  Google Scholar 

  • Begum G (2011) Organ-specific ATPase and phosphorylase enzyme activities in a food fish exposed to a carbamate insecticide and recovery response. Fish Physiol Biochem 37:61–69

    Article  CAS  PubMed  Google Scholar 

  • Beutler E (1984) Red cell metabolism: a manual of biochemical methods, 3rd edn. Grune & Straton, Michigan 187p

    Google Scholar 

  • Bradbury SP, Coats JR (1989) Toxicokinetics and toxicodynamics of pyrethroid insecticides in fish. Environ Toxicol Chem 8:373–380

    Article  CAS  Google Scholar 

  • Brander SM, Gabler MK, Fowler NL, Connon RE, Schlenk D (2016) Pyrethroid pesticides as endocrine disruptors: molecular mechanisms in vertebrates with focus on fishes. Environ Sci Tech 50:8977–8992

  • Camargo MMP, Martinez CBR (2007) Histopathology of gills, kidney and liver of a neotropical fish caged in an urban stream. Neotrop Ichthyol 5:327–336

    Article  Google Scholar 

  • Carr RS, Bally MB, Thomas P, Neff JM (1983) Comparision of methods for determination of ascorbic acid in animal tissues. Anal Chem 55:1229–1232

    Article  CAS  PubMed  Google Scholar 

  • Corcellas C, Eljarrat E, Barceló D (2015) First report of pyrethroid bioaccumulation in wild river fish: a case study in Iberian river basins (Spain). Environ Int 75:110–116

    Article  CAS  PubMed  Google Scholar 

  • Cunha FS et al (2018) Deltamethrin-induced nuclear erythrocyte alteration and damage to the gills and liver of Colossoma macropomum. Environ Sci Pollut Res Int 25:15102–12110

    Article  CAS  PubMed  Google Scholar 

  • Di Giulio RT, Meyer JN (2008) Reactive oxygen species and oxidative stress. In: Di Giulio RT, Hinton DE (eds) The toxicology of fishes. CRC Press, Florida, pp 273–326

    Chapter  Google Scholar 

  • Di Giulio RT, Washburn PC, Wenning RJ (1989) Biochemical responses in aquatic animals: a review of determinants of oxidative stress. Environ Toxicol Chem 8:1103–1123

    Article  Google Scholar 

  • Dinu D, Marinescu D, Munteanu MC, Staicu AC, Costache M, Dinischiotu A (2010) Modulatory effects of deltamethrin on antioxidant defense mechanisms and lipid peroxidation in Carassius auratus gibelio liver and intestine. Arch Environ Con Tox 58:757–764

  • Doria HB, Ferreira MB, Rodrigues SD, Lo SM, Domingues CE, Nakao LS, de Campos SX, Ribeiro CAO, Randi MAF (2018) Time does matter! Acute copper exposure abolishes rhythmicity of clock gene in Danio rerio. Ecotoxicol Environ Saf 155:26–36

    Article  CAS  PubMed  Google Scholar 

  • Drabkin DL (1948) The standardization of haemoglobin measurement. Am J Med Sci 215:110–111

    Article  CAS  PubMed  Google Scholar 

  • Draper HH, Hadley M (1990) Malondialdehyde determination as index of lipid peroxidation. Method Enzymol 186:421–431

    Article  CAS  Google Scholar 

  • Ellman GL, Courtney KD, Andres JR, Featherstone RM (1961) A new rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95

    Article  CAS  Google Scholar 

  • Ensibi C, Hernández-Moreno D, Santiyán MPM, Yahya MND, Rodriguez FS, Pérez-López M (2014) Effects of carbofuran and deltamethrin on acetylcholinesterase activity in brain and muscle of the common carp. Environ Toxicol 29:386–393

    Article  CAS  PubMed  Google Scholar 

  • Evans DH, Piermarini PM, Choe KP (2005) The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste. Physiol Rev 85:97–177

    Article  CAS  Google Scholar 

  • Fawole OO, Yekeen TA (2014) Alterations in haematological and biochemical parameters of African catfish Clarias gariepinus exposed to sublethal concentrations of deltamethrin. Zool Ecol 24:355–360

    Article  Google Scholar 

  • Ferrero-Milani L, Nielsen OH, Andersen PS, Girardin SE (2007) Chronic inflammation: the importance of NOD2 and NALP3 in interleukin-1B generation. Clin Exp Immunol 147:227–235

    Google Scholar 

  • Firat O, Cogun HY, Yuzereroglu TA, Gok G, Firat O, Kargin F, Kotemen Y (2011) A comparative study on the effects of a pesticide (cypermethrin) and two metals (copper, lead) to serum biochemistry of Nile tilapia, Oreochromis niloticus. Fish Physiol Biochem 37:657–666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fonseca-González I, Quinones ML, Lenhart A, Brogdon WG (2011) Insecticide resistance status of Aedes aegypti (L.) from Colombia. Pest Manag Sci 67:430–437

    Article  CAS  PubMed  Google Scholar 

  • Gassner B, Wüthrich A, Scholtysik G, Solioz M (1997) The pyrethroids permethrin and cyhalothrin are potent inhibitors of the mitochondrial complex I. J Pharmacol Exp Ther 281:855–860

    CAS  PubMed  Google Scholar 

  • Gaulke GL, Denis CE, Wahl SH, Suski CD (2014) Acclimation to a low oxygen environment alters the haematology of largemouth bass (Micropterus salmoides). Fish Physiol Biochem 40:129–140

    Article  CAS  PubMed  Google Scholar 

  • Geeraerts C, Belpaire C (2010) The effects of contaminants in European eel: a review. Ecotoxicology 19:239–266

    Article  CAS  PubMed  Google Scholar 

  • Guardiola FA, Gónzalez-Párraga P, Meseguer J, Cuesta A, Esteban MA (2014) Modulatory effects of deltamethrin-exposure on the immune status, metabolism and oxidative stress in gilthead sea bream (Sparus aurata L.). Fish Shellfish Immun 36:120–129

  • Guilhermino L, Barros P, Silva MC, Soares AMVM (1998) Should the use of inhibition of cholinesterases as a specific biomarker for organophosphate and carbamate pesticides be questioned? Biomarkers 3:157–163

    Article  CAS  Google Scholar 

  • Gutteridge JMC (1995) Lipid peroxidation and antioxidants as biomarkers of tissue damage. Clin Chem 1819–1828

  • Habig WH, Jakoby WB (1981) Assays for differentiation of glutathione-S-transferases. Methods Enzymol 77:398–405

    Article  CAS  PubMed  Google Scholar 

  • Halliwell B (2006) Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiol 141:312–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hammer C (1995) Fatigue and exercise tests in fish. Comp Biochem Physiol 1:1–20

    Article  Google Scholar 

  • Handy RD (1994) Intermittent exposure to aquatic pollutants: assessment, toxicity and sublethal responses in fish and invertebrates. Comp Biochem Physiol 107C(2):171–184

    CAS  Google Scholar 

  • Haya K (1989) Toxicity of pyrethroid insecticide to fish. Environ Toxicol Chem 8:381–391

    Article  CAS  Google Scholar 

  • Hernández-Moreno D, Soler F, Míguez MP, Pérez-López M (2010) Brain acetylcholinesterase, malondialdehyde and reduced glutathione as biomarkers of continuous exposure of tench, Tinca tinca, to carbofuran or deltamethrin. Sci Total Environ 408:4976–4983

    Article  CAS  PubMed  Google Scholar 

  • Hinton DE, Laurén DJ (1990) Integrative histopathological effects of environmental stressors in fishes. Am Fish S S 8:51–66

    Google Scholar 

  • Hunt L, Bonetto C, Resh VH, Buss DF, Fanelli S, Marrochi N, Lydy MJ (2016) Insecticide concentrations in stream sediments of soy production regions of South America. Sci Total Environ 547:114–124

    Article  CAS  PubMed  Google Scholar 

  • Inoue LAKA, Neto CS, Moraes G (2003) Clove oil as an anesthetic for juveniles of matrinxa Brycon cephalus (Gunther, 1896). Cienc Rural 33:943–947

    Article  Google Scholar 

  • Jabeen F, Chaudhry AS, Manzoor S, Shaheen T (2015) Examining pyrethroids, carbamates, and neonicotinoids in fish, water and sediments from the Indus River for potential health risks. Environ Monit Assess 187:1–11

    Article  CAS  Google Scholar 

  • Kakko I, Toimela T, Tahti H (2003) The synaptosomal membrane bound ATPase as a target for the neurotoxic effects of pyrethroids, permethrin, and cypermethrin. Chemosphere 51:475–480

    Article  CAS  PubMed  Google Scholar 

  • Kan Y, Cengiz EI, Ugurlu P, Yanar M (2012) The protective role of vitamin E on gill and liver tissue histopathology and micronucleus frequencies in peripheral erythrocytes of Oreochromis niloticus exposed to deltamethrin. Environ Toxicol Pharmacol 34:170–179

    Article  CAS  PubMed  Google Scholar 

  • Kappus H (1985) Lipid peroxidation: mechanisms, analysis, enzymology and biological relevance. In: Oxidative Stress (Sies H, ed). London: Academic Press, 273–310

  • Kelly SA, Havrilla CM, Brady TC, Abramo KH, Levin ED (1998) Oxidative stress in toxicology: established mammalian and emerging piscine model systems. Environ Health Perspect 106:375–384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kolo RJ, Lamai SL, Ojutiku RO (2010) Subacute toxicity of Karate to Sarotherodon galileus (Linneu, 1758). J Water Chem Technol 32:107–112

    Article  Google Scholar 

  • Kono Y, Fridovich I (1982) Superoxide radical inhibits catalase. J Biol Chem 257:5751–5754

    CAS  PubMed  Google Scholar 

  • Kono Y, Fridovich I (1983) Inhibition and reactivation of Mn-catalase: implications for valence changes at the active site manganese. J Biol Chem 258:13646–13648

    CAS  PubMed  Google Scholar 

  • Kruger NJ (1994) The Bradford method for protein quantification. Walker JM (ed) Methods in Molecular Biology, Basic Protein and Peptide Protocols vol 32. Humana Press Inc, Totowa, 15–21

  • Kumar A, Rai DK, Sharma B, Pandey RS (2009) λ-Cyhalothrin and cypermethrin induced in-vivo alterations in the activity of acetylcholinesterase in a freshwater fish, Channa punctatus (Bloch). Pestic Biochem Physiol 93:96–99

    Article  CAS  Google Scholar 

  • Kumar A, Sharma B, Pandey RS (2011) Cypermethrin induced alterations in nitrogen metabolism in freshwater fishes. Chemosphere 83:492–501

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Sharma B, Pandey RS (2014) λ-Cyhalothrin and cypermethrin induce stress in the freshwater muddy fish, Clarias batrachus. Toxicol Environ Chem 96:136–149

    Article  CAS  Google Scholar 

  • Maduenho LP, Martinez CBR (2008) Acute effects of diflubenzuron on the freshwater fish Prochilodus lineatus. Comp Biochem Physiol C 148:265–272

    Google Scholar 

  • Marigoudar SR, Ahmed RZ, David M (2013) Ultrastructural responses and oxidative stress induced by cypermethrin in the liver of Labeo rohita. Chem Ecol 29:296–308

    Article  CAS  Google Scholar 

  • Marinho JFU, Correia JE, Marcato ACC, Pedro-Escher J, Fontanetti CS (2014) Sugarcane vinasse in water bodies: impact assessed by liver histopathology in tilapia. Ecotoxicol Environ Saf 110:239–245

    Article  CAS  PubMed  Google Scholar 

  • Marino D, Ronco A (2005) Cypermethrin and chlorpyrifos concentration levels in surface water bodies of the Pampa Ondulada, Argentina. Bull Environ Contam Toxicol 75:820–826

    Article  CAS  PubMed  Google Scholar 

  • Modesto KA, Martinez CBR (2010) Roundup causes oxidative stress in liver and inhibits acetylcholinesterase in muscle and brain of the fish Prochilodus lineatus. Chemosphere 78(3):294–299

    Article  CAS  PubMed  Google Scholar 

  • Mohapatra S, Chakraborty T, Prusty AK, Kumar K, Prasad KP, Mohanta KN (2012) Fenvalerate-induced stress mitigation by dietary supplementation of the multispecies probiotic mixture in a tropical freshwater fish, Labeo rohita (Hamilton). Pestic Biochem Physiol 104:28–37

    Article  CAS  Google Scholar 

  • Moraes G, Avilez IM, Altran AE, Barbosa CC (2002) Biochemical and haematological responses of the banded knife fish Gymnotus carapo (Linnaeus, 1758) exposed to environmental hypoxia. Braz J Biol 62:633–640

    Article  CAS  PubMed  Google Scholar 

  • Moraes FD, Venturini FP, Cortella LRX, Rossi PA, Moraes G (2013) Acute toxicity of pyrethroid-based insecticides in the neotropical freshwater fish Brycon amazonicus. Ecotoxicol Environ Contam 8:59–64

    Google Scholar 

  • Moraes FD, Venturini FP, Rossi PA, Avilez IM, Souza NES, Moraes G (2018) Assessment of biomarkers in the neotropical fish Brycon amazonicus exposed to cypermethrin-based insecticide. Ecotoxicology 27:188–197

    Article  CAS  PubMed  Google Scholar 

  • Muggelberg LL, Hartz KEH, Nutile SA, Harwood AD, Heim JR, Derby AP, Weston DP, Lydy MJ (2017) Do pyrethroid-resistant Hyalella azteca have greater bioaccumulation potential compared to non-resistant populations? Implications for bioaccumulation in fish. Environ Pollut 220A:375–382

    Article  CAS  Google Scholar 

  • Muranli FD, Güner U (2011) Induction of micronuclei and nuclear abnormalities in erythrocytes of mosquito fish (Gambusia affinis) following exposure to the pyrethroid insecticide lambda-cyhalothrin. Mut Res 94:104–108

    Article  CAS  Google Scholar 

  • Muthuviveganandavel V, Hwang I, Anita V, Malarani PS, Selvam C, Hemalatha M, Pandurangan M (2013) Synthetic pyrethroid effect on blood plasma biomarker enzymes and histological changes in Catla catla. Int J Exp Pathol 94:104–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Narra MR (2016) Single and cartel effect of pesticides on the biochemical and haematological status of Clarias batrachus: a long-term monitoring. Chemosphere 144:966–974

    Article  CAS  PubMed  Google Scholar 

  • Odajima T, Yamazaki I (1972) Myeloperoxidase of the leukocyte of normal blood. III. The reaction of ferric myeloperoxidase with superoxide anion. Biochim Biophys Acta 284:355–359

    Article  CAS  PubMed  Google Scholar 

  • Olsvik PA, Omsrud R, Lunestad BT, Steine N, Fredriksen BN (2014) Transcriptional responses in Atlantic salmon (Salmo salar) exposed to deltamethrin, alone or in combination with azamethiphos. Comp Biochem Physiol C 162:23–33

    CAS  Google Scholar 

  • Payne JF, Kiceniuk JW, Squires WR, Fletcher GL (1978) Pathological changes in a marine fish after a six month exposure to petroleum. J Fish Res Board Can 35:665–667

    Article  Google Scholar 

  • Piner P, Üner N (2012) Oxidative and apoptotic effects of lambda-cyhalothrin modulated by piperonyl butoxide in the liver of Oreochromis niloticus. Environ Toxicol Pharmacol 33:414–420

    Article  CAS  PubMed  Google Scholar 

  • Poleksic V, Mitrovic-Tutundzic V (1994) Fish gills as a monitor of sublethal and chronic effects of pollution. In: Muller R, Lloyd R (eds) Sublethal and chronic effects of pollutants on freshwater fish. Fishing New Books, Oxford, pp 339–352

    Google Scholar 

  • Prusty AK, Meena DK, Mohapatra S, Panikkar P, Das P, Gupta SK, Behera BK (2015) Synthetic pyrethroids (type II) and freshwater fish culture: perils and mitigation. Int Aquat Res 7:163–191

    Article  Google Scholar 

  • Quabius ES, Balm PH, Wendelaar Bonga S (1997) Interrenal stress responsiveness of tilapia (Oreochromis mossambicus) in impaired by dietary exposure to PCB 126. Gen Comp Endocrinol 108:472–482

    Article  CAS  PubMed  Google Scholar 

  • Randall DJ, Connell DW, Yang R, Wu SS (1998) Concentrations of persistent lipophilic compounds in fish are determined by exchange across the gills, not through the food chain. Chemosphere 37:1263–1270

    Article  CAS  PubMed  Google Scholar 

  • Riar N, Crago J, Jiang W, Maryoung LA, Gan J, Schlenk D (2013) Effects of salinity acclimation on the endocrine disruption and acute toxicity of bifenthrin in freshwater and euryhaline strains of Oncorhynchus mykiss. Environ Toxicol Chem 32:2779–2785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saravanan R, Revathi K, Murthy PB (2009) Lambda-cyhalothrin induced alterations in Clarias batrachus. J Environ Biol 30:265–270

    CAS  PubMed  Google Scholar 

  • Sentürk M, Ceyhun SB, Erdogan O, Küfrevioglu ÖI (2009) In vitro and in vivo effects of some pesticides in glucose-6-phosphate dehydrogenase enzyme activity from rainbow trout (Onchorhynchus mykiss) erythrocytes. Pestic Biochem Physiol 95:95–99

    Article  CAS  Google Scholar 

  • SEPA. Scottish Environment Protection Agency (2008) Attachment XIV. Guidance note on the licensing of discharges of AMX (Deltamethrin) at marine cage fish. https://www.sepa.org.uk/media/114914/fish-farm-manual-attachment-14.pdf (last accessed 28 Dec 2017)

  • Singh S, Tiwari RK, Pandey RS (2018) Evaluation of acute toxicity of triazophos and deltamethrin and the inhibitory effect on AChE activity in Channa punctatus. Toxicol Rep 5:85–89

    Article  CAS  PubMed  Google Scholar 

  • Soderlund DM, Clark JM, Sheets LP, Mullin LS, Piccirillo VJ, Sargent D, Stevens JT, Weiner ML (2002) Mechanisms of pyrethroid neurotoxicity: implications for cumulative risk assessment. Toxicology 171:3–59

    Article  CAS  Google Scholar 

  • Tilton FA, Bammler TK, Gallagher EP (2011) Swimming impairment and acetylcholinesterase inhibition in zebrafish exposed to copper or chlorpyrifos separately, or as mixtures. Comp Biochem Physiol C 153:9–16

    Google Scholar 

  • Toumi H, Boumaiza M, Millet M, Radetski CM, Felten V, Férard JF (2015) Is acetylcholinesterase a biomarker of susceptibility in Daphnia magna (Crustacea, Cladocera) after deltamethrin exposure? Chemosphere 120:351–356

    Article  CAS  PubMed  Google Scholar 

  • Tu W, Xu C, Lu B, Lin C, Wu Y, Liu W (2016) Acute exposure to synthetic pyrethroids causes bioconcentration and disruption of the hypothalamus–pituitary–thyroid axis in zebrafish embryos. Sci Total Environ 542:876–885

    Article  CAS  PubMed  Google Scholar 

  • United Kingdom (2017) Summary of product characteristcs – AlphaMax®. Available at: https://www.google.com.br/url?sa=t&rct=j&q=&esrc=s&source=web&cd=5&ved=0ahUKEwjq1ovs5vLXAhVJHpAKHQf4DbcQFghIMAQ&url=http%3A%2F%2Fwww.vmd.defra.gov.uk%2Fproductinformationdatabase%2FSPC_Documents%2FSPC_229187.DOC&usg=AOvVaw2xfI1sTEpk5pYxv5jtgWIP. (last accessed 20 December 2017)

  • Van Geest JL, Burridge LE, Kidd KA (2014) Toxicity of two pyrethroid-based anti-sea lice pesticides, AlphaMax® and Excis®, to a marine amphipod in aqueous and sediment exposures. Aquaculture 434:233–240

    Article  CAS  Google Scholar 

  • Wendelaar Bonga SE, Lock RAC (1992) Toxicants and osmoregulation in fish. Neth J Zool 42:478–493

    Google Scholar 

  • Wheelock CE, Eder KJ, Werner I, Huang H, Jones PD, Brammell BF, Elskus AA, Hammock BD (2005) Individual variability in esterase activity and CYP1A levels in Chinook salmon (Oncorhynchus tshawytscha) exposed to fenvalerate and chlorpyrifos. Aquat Toxicol 74:172–192

  • Wielogórska E, Elliott CT, Danaher M, Connolly L (2015) Endocrine disruptor activity of multiple environmental food chain contaminants. Toxicol in Vitro 29:211–220

  • Wintrobe MM (1934) Variations in size and haemoglobin content of erythrocytes in the blood of various vertebrates. Fol Haematol 51:32–49

    Google Scholar 

  • Yildirim MZ, Benlı AÇK, Selvı M, Özkul A, Erkoç F, Koçak O (2006) Acute toxicity, behavioural changes, and histopathological effects of deltamethrin on tissues (gills, liver, brain, spleen, kidney, muscle, skin) of Nile Tilapia (Oreochromis niloticus L.) fingerlings. Environ Toxicol 21(6):614–620

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the technician Mr. da Silva ADA; to all colleagues of the Laboratory of Adaptive Biochemistry for the logistical support; to Polettini Fish Farm for providing the fish; and to DVA Agro do Brasil for kindly granting LCH (Trinca Caps®). We also thank two anonymous reviewers, for their considerations substantially improved the manuscript.

Funding

The present research was supported by Sao Paulo Research Foundation (FAPESP, proc. no 2010/17007-0), which also provided a PhD scholarship to Venturini FP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. P. Venturini.

Ethics declarations

All experiments were approved by the Ethics Committee for Animal Research of the Federal University of Sao Carlos, under the license number CEUA 056/2011.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Venturini, F.P., de Moraes, F.D., Rossi, P.A. et al. A multi-biomarker approach to lambda-cyhalothrin effects on the freshwater teleost matrinxa Brycon amazonicus: single-pulse exposure and recovery. Fish Physiol Biochem 45, 341–353 (2019). https://doi.org/10.1007/s10695-018-0566-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-018-0566-1

Keywords

Navigation