Skip to main content

Advertisement

Log in

Toxicology of arsenic in fish and aquatic systems

  • Review
  • Published:
Environmental Chemistry Letters Aims and scope Submit manuscript

Abstract

Arsenic (As) is found in waters such as seawater, warm springs, groundwater, rivers, and lakes. In aquatic environments, As occurs as a mixture of arsenate and arsenite, with arsenate usually predominating. The unrestricted application of As pesticides, industrial activities, and mining operations has led to the global occurrence of soluble As above permissible levels of 0.010 mg/L. Continuous exposure of freshwater organisms including fish to low concentrations of As results in bioaccumulation, notably in liver and kidney. As a consequence As induces hyperglycemia, depletion of enzymatic activities, various acute and chronic toxicity, and immune system dysfunction. Here we review arsenic chemistry, the occurrence of arsenic in aquatic system, the transformation and metabolism of arsenic; arsenic bioaccumulation and bioconcentration; behavioral changes; and acute and other effects such as biochemical, immunotoxic, and cytogenotoxic effects on fish.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abernathy CO, Liu YP, Longfellow D, Aposhian HV, Beck B, Fowler B, Goyer R, Menzer R, Rossman T, Thompson C, Waalkes M (1999) Arsenic: health effects, mechanisms of actions, and research issues. Environ Health Perspect 107:593–597

    CAS  Google Scholar 

  • Abernathy CO, Thomas DJ, Calderon RL (2003) Health effects and risk assessment of arsenic. J Nutr 133:1536–1538

    Google Scholar 

  • Acharyya SK, Chakraborty P, Lahiri S, Raymahashay BC, Guha S, Bhowmik A (1999) Arsenic poisoning in the Ganges delta. Nature 401(6753):545–547

    CAS  Google Scholar 

  • Adhikari S, Sarkar B, Chatterjee A, Mahapatra CT, Ayyappan S (2004) Effects of cypermethrin and carbofuran hematological parameters and prediction of their recovery in a freshwater teleost, Labeo rohita (Hamilton). Ecotoxicol Environ Saf 58:220–226

    CAS  Google Scholar 

  • Agarwal S, Ray S, Mazumder S, Bhattacharya S (2009) Arsenic tri-oxide and lead acetate induce apoptosis in adult rat hepatic stem cells. Cell Biol Toxicol 25:403–413

    CAS  Google Scholar 

  • Agency for Toxic Substances and Disease Registry (1997) ATSDR, Public Health Service. U.S. Department of Health and Human Services, Atlanta

    Google Scholar 

  • Agusa T, Takagi K, Kubota R, Anan Y, Iwata H, Tanabe S (2008) Specific accumulation of arsenic compounds in green turtles (CheloniamyDas) and hawksbill turtles (Eretmochelys imbricata) from Ishigaki Island, Japan. Environ Pollut 153:127–136

    CAS  Google Scholar 

  • Ahmed K, Akhand AA, Hasan M, Islam M, Hasan A (2008) Toxicity of arsenic (sodium arsenite) to fresh water spotted snakehead Channa punctatus (Bloch) on cellular death and DNA content. American-Eurasian J Agric & Environ Sci 4(1):18–22

    Google Scholar 

  • Ahmed AAM, Alam MJB, Ahmed AAM (2011) Evaluation of socioeconomic impact of arsenic contamination in Bangladesh. J Toxicol Environ Heal Sci 3(10):298–307

    CAS  Google Scholar 

  • Ahmed MK, Habibullah-Al-Mamun M, Hossain MA, Arif M, Parvin E, Akter MS, Khan MS, Islam MM (2012) Assessing the genotoxic potentials of arsenic in tilapia (Oreochromis mossambicus) using alkaline comet assay and micronucleus test. Chemosphere 84:143–149

    Google Scholar 

  • Ahmed MK, Habibullah-Al-Mamun M, Parvin E, Akter MS, Khan MS (2013) Arsenic induced toxicity and histopathological changes in gill and liver tissue of freshwater fish, tilapia (Oreochromis mossambicus). Exp Toxicol Pathol 65(6):903–909

    CAS  Google Scholar 

  • Akter MS, Ahmed MK, Akhand MAA, Islam MM (2008) Acute toxicity of arsenic and mercury to fresh water climbing perch, Anabas testudineus (Bloch). World J Zoology 3(1):13–18

    Google Scholar 

  • Alexander JB, Ingram GA (1992) Noncellular nonspecific defense mechanisms of fish. Annu Rev Fish Dis 2:249–279

    Google Scholar 

  • Allen HE (ed) (2002) Bioavailability of metals in terrestrial ecosystems: importance of partitioning for bioavailability to invertebrates, microbes and plants. Society for Environmental Toxicology and Chemistry, SETAC Press, New York, p 158

    Google Scholar 

  • Allen T, Singhal R, Rana SVS (2004) Resistance to oxidative stress in a freshwater fish Channa punctatus after exposure to inorganic arsenic. Biol Trace Element Res 98:63–72

    CAS  Google Scholar 

  • Allin CJ, Wilson RW (2000) Effects of pre-acclimation to aluminium on the physiology and swimming behavior of juvenile rainbow trout (Oncorhynchus mykiss) during a pulsed exposure. Aquat Toxicol 51(2):213–224

    CAS  Google Scholar 

  • Ana NA, Silbergeld EK, Streeter RA, Clark J, Burke M, Thomas A, Eliseo Guallar (2006) Arsenic exposure and type-2 diabetes: a systematic review of the experimental and epidemiologic evidence. Environ Health Persp 114(5):641–648

    Google Scholar 

  • Andrew AS, Waren AJ, Brachowsky A, Temple KA, Klei L, Soucy NV, O’ara KA, Hamilton JW (2003) Genomic and proteomic profiling of responses to toxic metals in human lung cells. Environ Health Persp 111:825–835

    CAS  Google Scholar 

  • Aposhian HV, Zakharya RA, Wildfang EK (1999) How is inorganic arsenic detoxified? In: Chappell WR, Abernathy CO, Calderon RL (eds) Arsenic: exposure and health effects. Elsevier Science Ltd., New York, pp 289–297

    Google Scholar 

  • Arai A, Naruse K, Mitan H, Shima A (1995) Cloning and characterization of cDNAs for 70-kDa heat shock proteins (Hsp70) from two fish species of the genus Oryzias. Jpn J Genet 70:423–433

    CAS  Google Scholar 

  • Bagnyukova TV, Luzhna L, Pogribny I, Lushchak V (2007) Oxidative stress and antioxidant defenses in goldfish liver in response to short-term exposure to arsenite. Environ Mol Mutagen 48:658–665

    CAS  Google Scholar 

  • Baldissarelli LA, Capiotti KM, Bogo MR, Ghisleni G, Bonan CD (2012) Arsenic alters behavioral parameters and brain ectonucleotidases activities in zebrafish (Danio rerio). Comp Biochem Physiol C 155(4):566–572

    CAS  Google Scholar 

  • Banerjee S, Mitra T, Purohit GK, Mohanty S, Mohanty BP (2015) Immunomodulatory effect of arsenic on cytokine and HSP gene expression in Labeo rohita fingerlings. Fish Shellfish Immunol 44(1):43–49

    CAS  Google Scholar 

  • Barrett JC, Lamb PW, Wang TC, Lee TC (1989) Mechanisms of arsenic-induced cell transformation. Biol Trace Elem Res 21:421–429

    CAS  Google Scholar 

  • Bears H, Richards JG, Schulte PM (2006) Arsenic exposure alters hepatic arsenic species composition and stress-mediated gene expression in the common killifish (Fundulus heteroclitus). Aquat Toxicol 77:257–266

    CAS  Google Scholar 

  • Begum A, Mustafa AI, Amin MN, Banu N, Chowdhury TR (2013) Accumulation and histopathological effects of arsenic in tissues of shingi fish (Stinging Catfish) Heteropneustes fossilis (Bloch, 1794). J Asiat Soc Bangladesh Sci 39(2):221–230

    Google Scholar 

  • Bernstam L, Nriagu J (2000) Molecular aspects of arsenic stress. J Toxicol Environ Heal B 3(4):293–322

    CAS  Google Scholar 

  • Bhattacharya A, Bhattacharya S (2007) Induction of oxidative stress by arsenic in Clarias batrachus: involvement of peroxisomes. Ecotoxicol Environ Saf 66(2):178–187

    CAS  Google Scholar 

  • Bhattacharya T, Ray AK, Bhattacharya S (1987) Blood glucose and hepatic glycogen interrelationship in Channa punctatus: a parameter of non lethal toxicity bioassay with intestinal pollutants. Indian J Exp Biol 25:539–541

    CAS  Google Scholar 

  • Bissen M, Frimmel FH (2003a) Arsenic a review. Part I: occurrence, toxicity, speciation, and mobility. Acta Hydrochim Hydrobiol 31:9–18

    CAS  Google Scholar 

  • Bissen M, Frimmel FH (2003b) Arsenic—a review. Part II: oxidation of arsenic and its removal in water treatment. Acta Hydrochim Hydrobiol 31:97–107

    CAS  Google Scholar 

  • Blechinger SR (2002) Using hsp70 expression as an in vivo biomarker of cellular toxicity in early life stages of zebrafish following exposure to cadmium and arsenic. http://hdl.handle.net/10388/etd-08272012-110946

  • Brochmoller J, Cascorbi I, Henning S, Meisel C, Roots I (2000) Molecular genetics of cancer susceptibility. Pharmacology 61:212–227

    Google Scholar 

  • Bryant V, Newbery DM, McLusky DS, Campbell R (1985) Effect of temperature and salinity on the toxicity of arsenic to three estuarine invertebrates (Corophium volutator, Macoma balthica, Tubifex costatus). Mar Ecol Prog Ser 24:129–137

    CAS  Google Scholar 

  • Buhl KJ, Hamilton SJ (1990) Comparative toxicity of inorganic contaminants released by placer mining to early life stages of salmonids. Ecotoxicol Environ Saf 20(3):325–342

    CAS  Google Scholar 

  • Buhl KJ, Hamilton SJ (1991) Relative sensitivity of early life stages of arctic grayling, coho salmon, and rainbow trout to nine inorganics. Ecotoxicol Environ Saf 22(2):184–197

    CAS  Google Scholar 

  • Carlson P, David M, Smalley RJ, Van B (2013) Proteomic analysis of arsenic-exposed zebrafish (Danio rerio) identifies altered expression in proteins involved in fibrosis and lipid uptake in a gender-specific manner. Toxicol Sci 134(1):83–91

    CAS  Google Scholar 

  • Carvalho CS, Fernandes MN (2006) Effect of temperature on copper toxicity and hematological responses in the neotrophical fish, Prochilodus scrofa at low and high pH. Aquaculture 251:109–117

    CAS  Google Scholar 

  • Čelechovská O, Harkabusová V, Macharáčková B, Vitoulová E, Lavičková A (2011) Accumulation of arsenic during the growing period of rainbow trout (Oncorhynchus mykiss). Acta Vet Brno 80:219–225

    Google Scholar 

  • Cervantes C, Ji G, Ramirez JL (1994) Silver resistance to arsenic compounds in microorganisms. FEMS Microbiol Rev 15:355–367

    CAS  Google Scholar 

  • Chandra S, Banerjee TK (2003) Toxic impact of the inorganic salt zinc chloride on the skin (an accessory water breathing organ) of the air-breathing ‘murrel’ Channa striata. Res J Chem Environ 7:18–23

    CAS  Google Scholar 

  • Chauncey B, Schmid EC, Goldstein L (1988) Arsenical and mercurial inhibition of tyrosine transport by the flounder intestine. J Toxicol Environ Health Part A Curr Issues 23(2):257–265

    CAS  Google Scholar 

  • Chen CM, Lee SZ, Wang JS (2000) Metal contents of fish from culture ponds near scrap metal reclamation facilities. Chemosphere 40:65–69

    CAS  Google Scholar 

  • Chokkalingam K, Annamalai M, Satyanarayanan SK, Mathan R (2010) Toxicological effects of arsenate exposure on hematological, biochemical and liver transaminases activity in an Indian major carp, Catla catla. Food Chem Toxicol 28:2848–2854

    Google Scholar 

  • Chou WC, Anita LH, John FB, Constance AG, Chi VD (2001) Arsenic inhibition of telomerase transcription leads to genetic instability. J Clin Invest 108:1541–1547

    CAS  Google Scholar 

  • Chou BYH, Liao CM, Lin MC, Cheng HH (2006) Toxicokinetics/toxicodynamics of arsenic for farmed juvenile milkfish Chanos chanos and human consumption risk in BFD-endemic area of Taiwan. Environ Int 32:545–553

    CAS  Google Scholar 

  • Chowdhury TR, Basu GK, Mandel BK, Biswass BK, Samanta G, Chowdhury UK, Chandra CR, Lodh D, Roy SL, Saha KC, Roy S, Kabir S, Quamruzzaman Q, Chakraborti D (1999) Arsenic poisoning in the Ganges delta. Nature 401:545–546

    CAS  Google Scholar 

  • Chowdhury MJ, Pane EF, Wood CM (2004) Physiological effects of dietary cadmium Acclimation and waterborne cadmium challenge in rainbow trout: respiratory, ionoregulatory, and stress parameters. Comp Biochem Physiol C 139:163–173

    CAS  Google Scholar 

  • Clark ID, Raven KG (2004) Sources and circulation of water and arsenic in the Giant Mine, Yellowknife, NWT, Canada. Isotopes Environ Health Studies 40:115–128

    CAS  Google Scholar 

  • Cockell KA, Hilton JW (1988) Preliminary investigations on the comparative chronic toxicity of four dietary arsenicals to juvenile rainbow trout (Salmo gairdneri R.). Aquat Toxicol 12:73–82

    CAS  Google Scholar 

  • Cockell KA, Hilton JW, Bettger WJ (1991) Chronic toxicity of dietary disodium arsenate heptahydrate to juvenile rainbow trout (Oncorhynchus mykiss). Arch Environ Contam Toxicol 21(4):518–527

    CAS  Google Scholar 

  • Cockell KA, Hilton JW, Bettger WJ (1992) Hepatobiliary and hematological effects of dietary disodium arsenate heptahydrate in juvenile rainbow trout (Oncorhynchus mykiss). Comp Biochem Physiol C 103:453–458

    Google Scholar 

  • Cornejo-Ponce L, Lienqueo HH, Arriaza BT (2011) Levels of total arsenic in edible fish and shellfish obtained from two coastal sectors of the Atacama Desert in the north of Chile: use of non-migratory marine species as bioindicators of sea environmental pollution. J Environ Sci Health A 46(11):1274–1282

    CAS  Google Scholar 

  • Cossa D, Auger D, Averty B, Lucon M, Masselin P, Noël J (1992) Flounder (Platichthys flesus) muscle as an indicator of metal and organochlorine contamination of French Atlantic coastal waters. Ambio 176–182

  • D’Amico AR, Gibson AW, Bain LJ (2014) Embryonic arsenic exposure reduces the number of muscle fibers in killifish (Fundulus heteroclitus). Aqua Toxicol 146:196–204

    Google Scholar 

  • Dartmouth Toxic Metals Research Programme (2005) The facts on arsenic. University of Dartmouth, New Hampshire

    Google Scholar 

  • Das D, Sarkar D, Bhattacharya S (1998) Lipid peroxidative damage by arsenic intoxication is countered by glutathione-glutathione-S-transferase system and metallothionein in the liver of climbing perch, Anabas testudineus. Biomed Environ Sci 11:187–195

    Google Scholar 

  • Das S, Unni B, Bhattacharjee M, Wann SB, Rao PG (2012) Toxicological effects of arsenic exposure in a freshwater teleost fish, Channa punctatus. African J Biotech 11(19):4447–4454

    CAS  Google Scholar 

  • Datta S, Saha DR, Gosh D, Majumdar T, Bhattacharya S, Mazumder S (2007) Sub-lethal concentration of arsenic interferes with the proliferation of hepatocytes and induces in vivo apoptosis in Clarias batrachus L. Comp Biochem Physiol 145:339–349

    Google Scholar 

  • Datta S, Ghosh D, Saha DR, Bhattacharaya S, Mazumder S (2009) Chronic exposure to low concentration of arsenic is immunotoxic to fish: role of head kidney macrophages arsenic biomarkers of arsenic toxicity to Clarias batrachus. Aquat Toxicol 92:86–94

    CAS  Google Scholar 

  • Donohue JM, Abernathy CO (1999) Exposure to inorganic arsenic from fish and shellfish. In: Chappell WR, Abernathy CO, Calderon RL (eds) Arsenic exposure and health effects. Elsevier Science Ltd., Oxford, pp 89–98

    Google Scholar 

  • Drewniak L, Sklodowska A (2013) Arsenic-transforming microbes and their role in bio mining processes. Environ Sci Pollut Res 20:7728

    CAS  Google Scholar 

  • Duker AA, Carranza EJM, Hale M (2005) Arsenic geochemistry and health. Environ Int 31(5):631–641

    CAS  Google Scholar 

  • EPA (1985) Ambient water quality criteria for arsenic—1984. U.S. Environ Protection Agency Report 440/5-84-033. 66 pp

  • Erickson RJ, Mount DR, Highland TL, Hockett JR, Jenson CT (2011) The relative importance of waterborne and diet borne arsenic exposure on survival and growth of juvenile rainbow trout. Aquat Toxicol 104:108–115

    CAS  Google Scholar 

  • Fairbrother A, Wenstel R, Sappington K, Wood W (2007) Framework for metals risk assessment. Ecotoxicol Environ Saf 68:145–227

    CAS  Google Scholar 

  • Fattorini D, Bochetti R, Bompadre S, Regoli F (2004) Total content and chemical speciation of arsenic in the polychaete Sabella spallanzanii. Mar Environ Res 58:839–843

    CAS  Google Scholar 

  • Fishelson L (2005) Cytomorphological alterations of the thymus, spleen, headkidney, and liver in cardinal fish (Apogonidae, Teleostei) arsenic bioindicators of stress. J Morphol 267:57–69

    Google Scholar 

  • Fritzie TC, Yamaguchi S, Miura C, Miura T (2009) Arsenic inhibits in vitro spermatogenesis and induces germ cell apoptosis in Japanese eel (Anguilla japonica). Reproduction 138:279–287

    Google Scholar 

  • Gaim K, Gebru G, Abba S (2015) The effect of arsenic on liver tissue of experimental animals (fishes and mice)—a review article. International Journal of Scientific and Research Publications 5(5):1–9

    Google Scholar 

  • Garg S, Gupta RK, Jain KL (2008) Sub-lethal effects of heavy metals on biochemical composition and their recovery in Indian major carp. J Hazard Mat 163(2–3):1369–1384

    Google Scholar 

  • Gaworecki KM, Chapman RW, Neely MG, D’Amico AR, Bain LJ (2012) Arsenic exposure to killifish during embryogenesis alters muscle development. Toxicol Sci 125(2):522–531

    CAS  Google Scholar 

  • Gernhöfer M, Pawert M, Scharmm M, Müller E, Triebskom R (2001) Ultrastructural biomarkers arsenic tool to characterize the health status of fish in contaminated streams. J Aquat Ecosys Stress Reco 8:241–260

    Google Scholar 

  • Ghosh D, Bhattacharya S, Mazumder S (2006) Perturbations in the catfish immune responses by arsenic: organ and cell specific effects. Comp Biochem Physiol C 143:455–463

    Google Scholar 

  • Ghosh D, Datta S, Bhattacharya S, Mazumder S (2007) Long-term exposure to arsenic affects head kidney and impairs humoral immune responses of Clarias batrachus. Aquat Toxicol 81:79–89

    CAS  Google Scholar 

  • Gonzalez HO, Hu J, Gaworecki KM, Roling JA, Baldwin S, Gardea-Torresdey JL, Bain LJ (2010) Dose-responsive gene expression changes in juvenile and adult mummichogs (Fundulus heteroclitus) after arsenic exposure. Mar Environ Res 70(2):133–141

    CAS  Google Scholar 

  • Goytia-Acevedo RC, Cebrian ME, Beck DB, Walkes PM (2003) Differential effects of arsenic on intracellular free calcium levels and the proliferative response of murine mitogen-stimulated lymphocytes. Toxicology 189:235–244

    CAS  Google Scholar 

  • Graser R, O’hUigin C, Vincek V, Meyer A, Klein J (1996) Transspecies polymorphism of class II Mhc loci in danio fishes. Immunogenetics 44:36–48

    CAS  Google Scholar 

  • Guardiola FA, Gónzalez-Párraga MP, Cuesta A, Meseguer J, Martínez S, Martínez-Sánchez MJ, Pérez-Sirvent C, Esteban MA (2013) Immunotoxicological effects of inorganic arsenic on gilthead seabream (Sparus aurata L.). Aquat Toxicol 134–135:112–119

    Google Scholar 

  • Gul S, Belge-Kuruta E, Yildiz E, Sahan A, Doran F (2004) Pollution correlated modifications of liver antioxidant systems and histopathology of fish (Cyprinidae) living in Seyhan Dam Lake, Turkey. Environ Int 30:605–609

    CAS  Google Scholar 

  • Hamdi M, Sanchez MA, Beene LC, Liu Q, Landfear SM, Rosen BP, Liu Z (2009) Arsenic transport by zebrafish aquaglyceroporins. BMC Mol Biol 10(1):104

    Google Scholar 

  • Hamilton SJ, Buhl KJ (1990) Safety assessment of selected inorganic elements to fry of chinook salmon (Oncorhynchus tshawytscha). Ecotoxicol Environ Saf 20(3):307–324

    CAS  Google Scholar 

  • Hamilton SJ, Buhl KJ (1997) Hazard assessment of inorganics, individually and in mixtures, to two endangered fish in the San Juan River, New Mexico. Environ Toxicol Water Qual 12(3):195–209

    CAS  Google Scholar 

  • Han Z, Li J, Zhang M, Chunxia LV (2012) Effect of montmorillonite on arsenic accumulation in common carp. African J Biotech 11(22):6160–6168

    CAS  Google Scholar 

  • Haque MS, Roy SK (2012) Acute effects of arsenic on the regulation of metabolic activities in liver of fresh water fishes (Taki) during cold acclimation. Jordan J Biol Sc 5(2):91–97

    Google Scholar 

  • Hartwell SI, Jin JH, Cherry DS, Cairns J (1989) Toxicity versus avoidance response of golden shiner, Notemigonuscrysoleucas, to five metals. J Fish Biol 35(3):447–456

    CAS  Google Scholar 

  • Hazarika NS, Patowary K, Goswami M (2012) Toxic impact of sodium arsenite in Channa punctatus. The Clarion 1(1):84–88

    Google Scholar 

  • Hei TK, Liu SX, Waldren C (1998) Mutagenicity of arsenic in mammalian cells: role of reactive oxygen species. Proc Natl Acad Sci USA 95:8103–8107

    CAS  Google Scholar 

  • Hermann AC, Kim CH (2005) Effects of arsenic on zebra fish innate immune system. Mar Biotechnol 7:494–505

    CAS  Google Scholar 

  • Hossain K, Akhand AA, Kato M, Du J, Takeda K, Wu J, Takeuchi K, Liu W, Suzuki H, Nakashima I (2000) Arsenic induces apoptosis of murine T lymphocytes through membrane raft-linked signaling for activation of c-Jun amino-terminal kinase. J Immunol 165(8):4290–4297

    CAS  Google Scholar 

  • Huang RN, Ching Ho ICI, Yih LH, Lee TC (1995) Sodium arsenite induces chromosome endoreduplication and inhibits protein phosphatase activity in human fibroblasts. Environ Mol Mutagen 25:188–196

    CAS  Google Scholar 

  • Huang C, Ke Q, Costa M, Shi X (2004) Molecular mechanisms of arsenic carcinogenesis. Mol Cell Biochem 255:57–66

    CAS  Google Scholar 

  • Hughes MF, Beck BD, Chen Y, Lewis AS, Thomas DJ (2011) Arsenic exposure and toxicology: a historical perspective. Toxicol Sci 123(2):305–332

    CAS  Google Scholar 

  • Humtsoe N, Dawoodi R, Kulkarni B, Chavan B (2007) Effect of arsenic on the enzymes of the Rohu carp, Labeo rohita (Hamilton 1822). Raffles Bull Zool 14:17–19

    Google Scholar 

  • Jabeen G, Javed M, Azmat H (2012) Assessment of heavy metals in the fish collected from the river Ravi. Pakistan. Pak Vet J 32(1):107–111

    CAS  Google Scholar 

  • Jenkins RO, Ritchie AW, Edmonds JS, Goessler W, Molenat N, Kuehnelt D, Harrington CF, Sutton PG (2003) Bacterial degradation of arsenobetaine via dimethylarsinoylacetate. Arch Microbiol 180:2142–2150

    Google Scholar 

  • Jorgensen JB, Johansen LH, Steiro K, Johansen A (2003) CpG DNA induces protective antiviral immune responses in Atlantic salmon (Salmo salar L.). J Virol 77:11471–11479

    CAS  Google Scholar 

  • Jung H, Wilson DB, Walker LP (2003) Binding and reversibility of Thermobifida fusca Cel5A, Cel6B, and Cel48A and their respective catalytic domains to bacterial microcrystalline cellulose. Biotechnol Bioeng 84(2):151–159

    CAS  Google Scholar 

  • Kalay M, Canli M (2000) Elimination of essential (Cu, Zn) and non-essential (Cd, Pb) metals from tissues of a freshwater fish Tilapia zilli. Turk J Zool 24:429–436

    CAS  Google Scholar 

  • Kar S, Maity JP, Jean JS, Liu CC, Liu CW, Bundschuh J, Lu HY (2011) Health risks for human intake of aquacultural fish: arsenic bioaccumulation and contamination. J Env Sci Heal A 46(11):1266–1273

    CAS  Google Scholar 

  • Kavitha C, Malarvizhi A, Kumaran SS, Ramesh M (2010) Toxicological effects of arsenate exposure on hematological, biochemical and liver transaminases activity in an Indian major carp. Catla catla. Food Chem Toxicol 48(10):2848–2854

    CAS  Google Scholar 

  • Koch I, Reimer KJ, Beach A, Cullen WR, Gosden A, Lai VWM (2001) Arsenic speciation in fresh-water fish and bivalves. In: Chappell WR, Abernathy CO, Calderon RL (eds) Arsenic exposure and health effects IV. Elsevier, Oxford, pp 115–123

    Google Scholar 

  • Kotsanis N, Iliopoulou-Georgudaki J (1999) Arsenic induced liver hyperplasia and kidney fibrosis in rainbow trout (Oncorhynchus mykiss) by microinjection technique: a sensitive animal bioassay for environmental metal-toxicity. Bull Environ Contam Toxicol 62(2):169–178

    CAS  Google Scholar 

  • Kotsanis N, Iliopoulou-Georgudaki J, Kapata-Zoumbos K (2000) Changes in selected hematological parameters at early stages of the rainbow trout, Oncorhynchus mykiss, subjected to metal toxicants: arsenic, cadmium and mercury. J Appl Ichthyol 16:276–278

    CAS  Google Scholar 

  • Kousar S, Javed M (2014) Heavy metals toxicity and bioaccumulation patterns in the body organs of four fresh water fish species. Pak Vet J 34(2):161–164

    CAS  Google Scholar 

  • Kovendan K, Vincent S, Janarthanan S, Saravanan M (2013) Expression of metallothionein in liver and kidney of freshwater fish Cyprinus carpio var. communis (Linn) exposed to arsenic trioxide. Am J Sci Ind Res 4(1):1–10

    CAS  Google Scholar 

  • Kreppel H, Bauman JW, Liu J, McKim JM, Klaassen CD (1993) Induction of metallothionein by arsenicals in mice. Fundam Appl Toxicol 20:184–189

    CAS  Google Scholar 

  • Kumar R, Banerjee TK (2012a) Analysis of arsenic bioaccumulation in different organs of the nutritionally important catfish, Clarias batrachus (L.) exposed to the trivalent arsenic salt, sodium arsenite. Bull Environ Contamin Toxicol 89(3):445–449

    CAS  Google Scholar 

  • Kumar R, Banerjee TK (2012b) Impact of sodium arsenite on certain biomolecules of nutritional importance of the edible components of the economically important catfishx C. batrachus (Linn.). Ecol Food Nutr 51(2):114–127

    Google Scholar 

  • Kumar A, Kesari VP, Khan PK (2013) Fish micronucleus assay to assess genotoxic potential of arsenic at its guideline exposure in aquatic environment. Biometals 26(2):337–346

    CAS  Google Scholar 

  • Kumari B, Ahsan J (2011a) Study of muscle glycogen content in both sexes of Indian teleost Clarias batrachus (Linn.) exposed to different concentrations of arsenic. Fish Physiol Biochem 37(1):161–167

    CAS  Google Scholar 

  • Kumari B, Ahsan J (2011b) Acute exposure of arsenic tri-oxide produces hyperglycemia in both of an Indian teleost, Clarias batrachus (Linn.). Arch Environ Contam Toxicol 61(3):435–442

    CAS  Google Scholar 

  • Kumari B, Ghosh AK (2012a) Arsenic induced cytotoxic assessment in haemocytes of catfish Heteropneustis fossilis. In: Proceeding in SEB animal section symposium “Woodstock 2012”, Tuscany, Italy

  • Kumari B, Ghosh AK (2012b) Low doses of arsenic help to survive in healthier condition to Heteropneustis fossilis. In: Proceeding in SEB animal section symposium “Woodstock 2012”, Tuscany, Italy

  • Kumari B, Ahsan J, Kumar V (2012) Comparative studies of liver and brain glycogen content of male and female Clarias batrachus (L.) after exposure of different doses of arsenic. Toxicol Environ Chem 94(9):1758–1767

    CAS  Google Scholar 

  • Kumari B, Ghosh AK, Kumari A (2013) Arsenic induced hyper and hypo-pigmentation of skin in freshwater fish Heteropneustes fossilis. In: Conference proceeding: Asian Pacific Aquaculture 2013, Ho Chi Minh City, Vietnam. https://www.was.org/meetingabstracts/ShowAbstract.aspx?Id=30795

  • Kumari B, Kumar V, Ahsan J (2015) Effect of arsenic on glucose and glycogen content in a walking catfish (Clarias batrachus). In: Conference proceeding: World Aquaculture 2015, Jeju, Korea. https://www.was.org/meetingabstracts/ShowAbstract.aspx?Id=35383

  • Lam SH, Wu YL, Vega VB, Miller LD, Spitsbergen J, Tong Y, Zhan H, Govindarajan KR, Lee S, Mathavan S, Krishna Murthy KR, Buhler DR, Liu ET, Gong Z (2006) Conservation of gene expression signatures between zebrafish and human liver tumors and tumor progression. Nat Biotechnol 24:73–75

    CAS  Google Scholar 

  • Lavanya S, Mathan R, Chokkalingam K, Annamalai M (2011) Hematological, biochemical and ionoregulatory responses of Indian major carp Catla catla during chronic sub lethal exposure to inorganic arsenic. Chemosphere 82:977–985

    CAS  Google Scholar 

  • Lewis J, Stokes P, Brereton N, Baxter Macarthur R (2012) Stability of arsenic speciation in fish muscle samples, under different storage and sample preparation conditions. Microchemical J 105:56–59

    CAS  Google Scholar 

  • Li C, Li P, Tan YM, Lam SH, Chan EC, Gong Z (2016) Metabolomic characterizations of liver injury caused by acute arsenic toxicity in zebrafish. PLoS ONE 11(3):e0151225

    Google Scholar 

  • Liao CM, Tsai JW, Ling MP, Liang HM, Chou YH, Yang PT (2004) Organ-specific toxicokinetics and dose-response of arsenic in tilapia Oreochromis mossambicus. Arch Environ Contam Toxicol 47:502–510

    CAS  Google Scholar 

  • Lima AA, Furtado B, Valduriez C, Mattoso M (2009) Parallel Olap Query processing in database clusters with data replication. Distributed and Parallel Databases. 25(1–2):97–123

    Google Scholar 

  • Little EE, Brewer SK (2001) Neurobehavioral toxicity in fish. In: Schlenk D, Benson WH (eds) Target organ toxicity in marine and freshwater teleosts new perspectives: toxicology and the environment, vol 2 systems. Taylor and Francis, London, pp 139–174

    Google Scholar 

  • Liu SX, Athar M, Lipa I, Waldren C, Hei TK (2001) Introduction of oxyradicals by arsenic, implication for mechanism of genotoxicity. Proc Nat Acad Sci USA 98:1643–1648

    CAS  Google Scholar 

  • Liu F, Gentles A, Theodorakis CW (2008) Arsenate and perchlorate toxicity, growth effects, and thyroid histopathology in hypothyroid zebrafish Danio rerio. Chemosphere 71(7):1369–1376

    CAS  Google Scholar 

  • Maher W, Goessler W, Kirby J, Raber B (1999) Arsenic concentrations and speciation in the tissues and blood of sea mullet (Mugil cephalus) from lake Macquarie NSW, Australia. Mar Chem 68:169–182

    CAS  Google Scholar 

  • Mayer FL (1987) Acute toxicity handbook of chemicals to estuarine organisms. PB87–188686. Environmental Research Laboratory, US EPA, Gulf Breeze, FL

  • Mayer FL, Ellersieck MR (1986) Manual of acute toxicity: interpretation and data base for 410 chemicals and 66 species of freshwater animals. Resource Publication 160. Washington, DC, U.S. Department of the Interior Fish and Wildlife Service

  • McGeachy SM, Dixon DG (1989) The impact of temperature on the acute toxicity of arsenate and arsenite to rainbow trout (Salmo gairdneri). Ecotoxicol Environ Saf 17(1):86–93

    CAS  Google Scholar 

  • McGeer JC, Brix KV, Skeaff JM (2003) Inverse relationship between bioconcentration factor and exposure concentration for metals: implications for hazard assessment of metals in the aquatic environment. Environ Toxicol Chem 22:1017–1037

    CAS  Google Scholar 

  • Mdgela R, Myburgh J, Correia D, Braathen M, Ejobi F, Botha C, Sandvik M, Skaare JV (2006) Evaluation of the gill filament-based EROD assay in African sharptooth catfish (Clarias gariepinus) arsenic a monitoring tool for waterborne PAH-type contaminants. Ecotoxicol 15:51–59

    Google Scholar 

  • Menzie CA, Ziccardi LM, Lowney YW, Fairbrother A, Shock SS, Tsuji JS (2009) Importance of considering the framework principles in risk assessment for metals. Environ Sci Technol 43:8478–8482

    CAS  Google Scholar 

  • Minokoshi Y, Saito M, Shimazu T (1988) Sympathetic activation of lipid synthesis in brown adipose tissue in the rat. J Physiol (Lond) 398:361–370

    CAS  Google Scholar 

  • Mohamed FAS, Nahed SG (2008) Environmental pollution-induced biochemical changes in tissues of Tilapia zillii, Solea vulgaris and Mugil capito from Lake Qarun, Egypt. Glob Vet 2(6):327–336

    Google Scholar 

  • Molina HM, Carmona A, Kouyoumdjian M, Borges DR (2000) Thimet oligopeptidase EC 3.4.24.15 is a major liver kininase. Life Sci 67:509–520

    CAS  Google Scholar 

  • Mondal K, Samanta S (2015) A review on arsenic contamination in fresh water fishes of West Bengal. Journal of Global Biosciences 4(5):2369–2374

    Google Scholar 

  • Morales AE, Perez-Jimenez A, Hidalgo MC, Abellan E, Cardenete G (2004) Oxidative stress and antioxidant defenses after prolonged starvation in Dentex dentex liver. Comp Biochem Physiol C 139:153–160

    Google Scholar 

  • Mukhopadhyay I, Nazir A, Saxena DK, Chowdhuri D (2003) Heat shock response: hsp70 in environmental monitoring. J Biochem Mol Toxicol 17:249–254

    CAS  Google Scholar 

  • Nagata S, Nagase H, Kawane K, Mukae N, Fukuyama H (2003) Degradation of chromosomal DNA during apoptosis. Cell Death Differ 10:108–116

    CAS  Google Scholar 

  • National Academy of Sciences (2001) Arsenic in drinking water. National Academies Press, Washington, pp 75–210

    Google Scholar 

  • Nayak AS, Lage CR, Kim CH (2007) Effects of low concentrations of arsenic on the innate immune system of the zebrafish (Danio rerio). Toxicol Sci 98:118–124

    CAS  Google Scholar 

  • Nevárez M, Moreno MV, Sosa M, Bundschuh J (2011) Arsenic in freshwater fish in the Chihuahua County water reservoirs (Mexico). J Environ Sci Heal A 46(11):1283–1287

    Google Scholar 

  • Ng JC (2005) Environmental contamination of arsenic and its toxicological impact on humans. Environ Chem 2:146–160

    CAS  Google Scholar 

  • Nordenson I, Beckman L (1991) Is the genotoxic effect of arsenic mediated by oxygen free radicals? Hum Hered 41:71–73

    CAS  Google Scholar 

  • Oliveria A, Ramirez B, Garcia FP (2005) Genotoxic damage in zebra fish (Danio rerio) by arsenic in waters from Zimapa´n, Hidalgo. Mexico. Mutagenesis 20(4):291–295

    Google Scholar 

  • Oremland RS, Dowdle PR, Hoeft S, Sharp JO, Schaefer JK, Miller LG, Blum JS, Smith RL, Bloom NS, Wallschlaeger D (2000) Bacterial dissimilatory reduction of arsenate and sulfate in meromictic Mono Lake, California. Geochim Cosmochim Acta 64(18):3073–3084

    CAS  Google Scholar 

  • Orloff K, Mistry K, Metcalf S (2009) Biomonitoring for environmental exposures to arsenic. J Toxicol Environ Heal B 12(7):509–524

    CAS  Google Scholar 

  • Pal S, Chatterjee AK (2004) Protective effect of methionine supplementation on arsenic-induced alteration of glucose homeostasis. Food Chem Toxicol 42:737–742

    CAS  Google Scholar 

  • Palaniappan PLRM, Vijayasundaram V (2008) The effect of arsenic exposure and the efficacy of DMSA on the proteins and lipids of the gill tissues of Labeo rohita. Food Chem Toxicol 47:1752–1759

    Google Scholar 

  • Palaniappan PLRM, Vijayasundaram V (2009) The bioaccumulation of arsenic and the efficacy of Meso-2, 3-dimercaptosuccinic acid in the selected organ tissues of Labeo rohita fingerlings using inductively coupled plasma-optical emission spectrometry. World Applied Sciences J 6(9):1247–1254

    CAS  Google Scholar 

  • Papaconstantinou AD, Brown KM, Noren BT, McAlister T, Fisher BR, Goering PL (2003) Mercury, cadmium, and arsenite enhance heat shock protein synthesis in chick embryos prior to embryotoxicity. Birth Defects Res B 68:456–464

    CAS  Google Scholar 

  • Patlolla AK, Tchounwou PB (2005) Serum acetyl cholinesterase arsenic a biomarker of arsenic-induced neurotoxicity in Sprague–Dawley rats. Int J Environ Res Public Health 2(1):80–83

    CAS  Google Scholar 

  • Patrick L (2003) Toxic metals and antioxidants: part II. The role of antioxidants in arsenic and cadmium toxicity. Altern. Med. Rev. 8:106–128

    Google Scholar 

  • Pazhanisamy K, Vasanthy M, Indra N (2007) Bioaccumulation of arsenic in fresh water fish Labeo rohita (Ham.). Bioscan 2(1):67–69

    CAS  Google Scholar 

  • Pedlar RM, Klaverkamp JF (2002) The accumulation, and distribution of dietary arsenic in lake whitefish (Coregonus clupeaformis). Aquat Toxicol 57(3):153–166

    CAS  Google Scholar 

  • Pedlar RM, Ptashynski MD, Wautier KG, Evans R, Baron CL, Klaverkamp JF (2002a) The accumulation, distribution and toxicological effects of dietary arsenic exposure in lake white (Coregonus clupeaformis) and lake trout (Salvelinus namaycush). Comp Biochem Physiol C 131:73–91

    CAS  Google Scholar 

  • Pedlar RM, Ptashynski MD, Evans R, Klaverkamp JF (2002b) Toxicological effects of dietary arsenic exposure in lake whitefish (Coregonus clupeaformis). Aquat Toxicol 57:167–189

    CAS  Google Scholar 

  • Ramirez AB, Garcia FB (2005) Genotoxic damage in zebra fish (Danio rerio) by arsenic in waters from imapan. Hidalgo, Mexico Mutagenesis 20:291–295

    CAS  Google Scholar 

  • Rankin MG, Dixon DG (1994) Acute and chronic toxicity of waterborne arsenite to rainbow trout (Oncorhynchus mykiss). Can J Fish Aquat Sci 51:372–380

    CAS  Google Scholar 

  • Rasmussen RE, Menzel DB (1997) Variation in arsenic-induced sister chromatid exchange in human lymphocytes and lymphoblastoid cell lines. Mutat Res 386:299–306

    CAS  Google Scholar 

  • Robinson BH, Brooks RR, Outred HA, Kirkman JH (1995) Mercury and arsenic in trout from the Taupo Volcanic Zone and Waikato River, North Island. New Zealand. Chem Speciation Bioavail 7(1):27–32

    CAS  Google Scholar 

  • Rodwell DE (1988) Teratology study in rats with Busan85. SLS Study No 3138.17. Springborn Life Sciences, Inc., Wareham, MA, pp. 1–19, 29

  • Rosemond S, de Xie Q, Liber K (2008) Arsenic concentration and speciation in five freshwater fish species from Back Bay near Yellowknife, NT. Canada Environ Monit Assess 147:199–210

    CAS  Google Scholar 

  • Rossman TG (2003) Mechanism of arsenic carcinogenesis: an integrated approach. Mutat Res 533:37–65

    CAS  Google Scholar 

  • Roy S, Bhattacharya S (2006) Arsenic -induced histopathology and synthesis of stress proteins in liver and kidney of Channa punctatus. Ecotoxicol Environ Saf 65(2):218–229

    CAS  Google Scholar 

  • Saglio P, Trijasse S (1998) Behavioral responses to atrazine and diuron in goldfish. Arch Environ Contam Toxicol 35:484–491

    CAS  Google Scholar 

  • Sanders JG (1986) Direct and indirect effects of arsenic on the survival and fecundity of estuarine zooplankton. Can J Fish Aquat Sci 43:694–699

    CAS  Google Scholar 

  • Schlenk D, Wolford L, Chelius M, Stevens J, Chan KM (1997) Effect of arsenite, arsenate, and the herbicide monosodium methyl arsonate (MSMA) on hepatic metallothionein expression and lipid peroxidation in channel catfish. Comp Biochem Physiol C 118:177–183

    CAS  Google Scholar 

  • Selamoglu Talas Z, Dundar PS, Gulhan FM, Orun I, Kakoolaki S (2012) Effects of propolis on some blood parameters and enzymes in carp exposed to arsenic. Iranian J Fish Sc 11(2):405–414

    Google Scholar 

  • Selvaraj V, Armistead MY, Cohenford M, Murray E (2012) Arsenic trioxide (As2O3) induces apoptosis and necrosis mediated cell death through mitochondrial membrane potential damage and elevated production of reactive oxygen species in PLHC-1 fish cell line. Chemosphere 90(3):1201–1209

    Google Scholar 

  • Shobha Rani A, Sudharsan R, Reddy TN, Reddy PUM, Raju TN (2000) Effect of sodium arsenite on glucose and glycogen levels in freshwater teleost fish Tilapia mossamibica. Pollution Research 19(1):129–131

    Google Scholar 

  • Shukla JP, Shukla KN, Dwivedi UN (1987) Survivality and impaired growth in arsenic treated fingerlings of Channa punctatus, a fresh water murrel. Acta Hydrochim Hydrobiol 15(3):307–311

    CAS  Google Scholar 

  • Singh AK, Banerjee TK (2008) Toxic effects of sodium arsenate (Na2HAsO4_7H2O) on the skin epidermis of air-breathing catfish Clarias batrachus (L.). Veterinarski Arhiv 78(1):73–88

    CAS  Google Scholar 

  • Sinha TKP, Kumar K (1992) Acute toxicity of mercuric chloride to Anabas testudineus (Bloch). Environ Ecol 10(3):720–722

    CAS  Google Scholar 

  • Smedley PL, Kinniburgh DG (2002) A review of the source, behaviour and distribution of arsenic in natural waters. Appl Geochem 17:517–568

    CAS  Google Scholar 

  • Smedley PL, Edmunds WM, Pelig-Ba KB (1996) Mobility of arsenic in groundwater in the Obuasi gold-mining area of Ghana: some implications for human health. Environ Geochem Health 113, 163–181, ed. by Appleton JD, Fuge R, Mccall GJH, Geological Society Special Issue, Chapman & Hall

  • Smith E, Smith J, Smith L, Biswas T, Correll R, Naidu R (2003) Arsenic in Australian environment: an overview. J Environ Sci Heal A 38(1):223–239

    CAS  Google Scholar 

  • Sorensen EMB (1991) Metal poisoning in fish, Chap. 2, arsenic. CRC Press, Boca Raton, pp 61–94

    Google Scholar 

  • Spehar RL, Fiandt JT (1986) Acute and chronic effects of water quality criteria-based metal mixtures on three aquatic species. Environ Toxicol Chem 5:917–931

    CAS  Google Scholar 

  • Suhendrayatna, Ohki A, Nakajima T, Maeda S (2002a) Studies on the accumulation and transformation of arsenic in freshwater organisms I. Accumulation, transformation and toxicity of arsenic compounds on the Japanese Medaka, Oryzias latipes. Chemosphere 46:319–324

    CAS  Google Scholar 

  • Suhendrayatna, Ohki A, Nakajima T, Maeda S (2002b) Studies on the accumulation and transformation of arsenic in freshwater organisms II. Accumulation and transformation of arsenic compounds by Tilapia mossambica. Chemosphere 46:325–331

    CAS  Google Scholar 

  • Suzuki N, Naranmandura H, Hirano S, Suzuki LT (2008) Theoretical calculations and reaction analysis on the interaction of pentavalent thio arsenicals with biorelevant thiol compounds. Chem Res Toxicol 21:550–553

    CAS  Google Scholar 

  • Tamas MJ, Wysocki R (2001) Mechanisms involved in metalloid transport and tolerance acquisition. Curr Genet 40:2–12

    CAS  Google Scholar 

  • Tanaka T (1990) Arsenic in the natural environment. Part II: arsenic concentrations in thermal waters from Japan. Appl Organomet Chem 4:197–203

    CAS  Google Scholar 

  • Taylor D, Maddock BG, Mance G (1985) The acute toxicity of nine ‘grey list’ metals (arsenic, boron, chromium, copper, lead, nickel, tin, vanadium and zinc) to two marine fish species: dab (Limanda limanda) and grey mullet (Chelonlabrosus). Aquat Toxic 7:135–144

    CAS  Google Scholar 

  • Thakur J, Mhatre M (2015) Bioaccumulation of heavy metals in Tilapia mossambicus fish from industrially polluted Patalganga River, India. International Journal 3(2):486–490

    CAS  Google Scholar 

  • Tisler T, Zagorc-Koncan J (2002) Acute and chronic toxicity of arsenic to some aquatic organisms. Bull Environ Contam Toxicol 69:421–429

    CAS  Google Scholar 

  • Tripathi S, Sahu DB, Kumar R, Kumar A (2003) Effect of acute exposure of sodium arsenite (Na3AsO3) on some hematological parameters of Clarias batrachus (common Indian catfish) in vivo. Indian J Environ Health 45:183–188

    CAS  Google Scholar 

  • Tsai JW, Liao CM (2006) Mode of action and growth toxicity of arsenic to tilapia Oreochromis mossambicus can be determined bioenergetically. Arch Environl Contam Toxicol 50:144–152

    CAS  Google Scholar 

  • Tsai JW, Huang YH, Chen WY, Liao CM (2012) Detoxification and bioregulation are critical for long-term waterborne arsenic exposure risk assessment for tilapia. Environ Monit Assess 184(1):61–572

    Google Scholar 

  • Turpeinen R, Pantsar-Kallio M, Haggblom M, Kairesalo T (1999) Influence of microbes on the mobilization, toxicity and Biomethylation of arsenic in soil. Sci Total Environ 236:173–180

    CAS  Google Scholar 

  • Tyokumbur ET, Okorie TG, Umma BS (2014) Bioaccumulation of arsenic and uranium in two fish species (Clarias lazera and Tilapia zilli) from Alaro stream in Ibadan, Nigeria. Health Sciences Research 1(4):68–71

    Google Scholar 

  • U. S. Environmental Protection Agency (USEPA) (1999) Biological assessment of the Idaho water quality standards for numeric water quality criteria for toxic pollutants for the U.S. Fish and Wildlife Service and the National Marine Fisheries Service. USEPA Region 10 Office, Seattle, WA

  • Venugopal B (2013) Physiologic and chemical basis for metal toxicity. Springer Science & Business Media, Berlin, p 238

    Google Scholar 

  • Vutukuru SS (2003) Chromium induced alterations in some biochemical profiles of the Indian major carp, Labeo rohita (Hamilton). Bull Environ Contam Toxicol 70:118–123

    CAS  Google Scholar 

  • Vutukuru SS, Prabhath NA, Raghavender M, Yerramilli A (2007) Effect of arsenic and Cr on the serum amino-transferases activity in Indian major carp, Labeo rohita. Int. J Environ Res Public Health 4:224–227

    CAS  Google Scholar 

  • Wang YC, Chaung RH, Tung LC (2004) Comparison of the cytotoxicity induced by different exposure to sodium arsenite in two fish cell lines. Aquat Toxicol 69:67–79

    CAS  Google Scholar 

  • Wei LH, Lai KP, Chen CA, Cheng CH, Huang YJ, Chou CH, Kuo ML, Hsieh CY (2005) Arsenic tri-oxide prevent radiation-enhanced tumor invasiveness and inhibits matrix metalloproteinase-9 through down regulation on nuclear factor B. Oncogene 24:390–398

    CAS  Google Scholar 

  • Williams L, Schoof RA, Goodrich-Mahoney JW (2006) Arsenic bioaccumulation in freshwater fishes. Hum Ecol Risk Assess 12(5):904–923

    CAS  Google Scholar 

  • Witeska M (2004) The effect of toxic chemicals of blood cell morphology in fish. Fresenius Environ Bull 13(12a):1379–1384

    CAS  Google Scholar 

  • Wrobel K, Wrobel K, Parker B, Kannamkumarath SS, Caruso JA (2002) Determination of As (III), As (V), monomethylarsonic acid, dimethylarsinic acid and arsenobetaine by HPLC-ICP-MS: analysis of reference materials, fish tissues and urine. Talanta 58(5):899–907

    CAS  Google Scholar 

  • Xu H, Lam SH, Shen Y, Gong Z (2013) Genome-wide identification of molecular pathways and biomarkers in response to arsenic exposure in zebrafish liver. PLoS ONE 8(7):e68737

    CAS  Google Scholar 

  • Yadav KK, Trivedi SP (2009) Sublethal exposure of heavy metals induces micronuclei in fish, Channa punctatus. Chemosphere 77:1495–1500

    CAS  Google Scholar 

  • Yamaguchi S, Miura C, Ito A, Agusa T, Iwata H, Tanabe S, Tuyen BC, Miura T (2007) Effects of lead, molybdenum, rubidium, arsenic and organochlorines on spermatogenesis in fish: monitoring at Mekong Delta area and in vitro experiment. Aquat Toxicol 83:43–51

    CAS  Google Scholar 

  • Yousef MI, El-DemerDash FM, Radwan FME (2008) Sodium arsenite induced biochemical perturbations in rats: ameliorating effect of curcumin. Food Chem Toxicol 46:3506–3511

    CAS  Google Scholar 

  • Zafarullah M, Wisniewski J, Shworak NW, Schieman S, Misra S, Gedamu L (1992) Molecular cloning and characterization of a constitutively expressed heat-shock-cognate hsc71 gene from rainbow trout. Eur J Biochem 204:893–900

    CAS  Google Scholar 

  • Zhang W, Huang L, Wang WX (2011) Arsenic bioaccumulation in a marine juvenile fish Terapon jarbua. Aquat Toxicol 105:582–588

    CAS  Google Scholar 

  • Zhang W, Liangmin Huanga BC, Wangc WX (2012) Biotransformation and detoxification of inorganic arsenic in marine juvenile fish Terapon jarbua after waterborne and dietborne exposure. J Hazard Mater 221–222:162–169

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bibha Kumari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumari, B., Kumar, V., Sinha, A.K. et al. Toxicology of arsenic in fish and aquatic systems. Environ Chem Lett 15, 43–64 (2017). https://doi.org/10.1007/s10311-016-0588-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10311-016-0588-9

Keywords

Navigation