Skip to main content
Log in

Molybdenum fertilizer improved antioxidant capacity of Chinese Merino sheep under compound contamination

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

To investigate the response of different levels of molybdenum (Mo) fertilizer to Chinese Merino sheep (Junken Type) grazing on natural heavy metal–contaminated meadows, this study was carried out in the Bayanbulak Grassland lying in the northwest of Xinjiang Uygur Autonomous Region, China. A total of 24-hm2 polluted meadows were fenced and were randomly divided into four groups (3 replication/group and 2 hm2/replication) applied 0-kg Mo, 1-kg Mo, 2-kg Mo, and 3-kg Mo (ammonium molybdate tetrahydrate) per hectare for the CON group, group I, group II, and group III, respectively. Seventy-two healthy 1-year-old Chinese Merino sheep (45.56 ± 2.35 kg) were randomly assigned to the tested pastures for 90 days. Compared with the CON group, the Mo content from fertilized groups and the Se content from group II and group III in serums and livers were significantly increased (P < 0.05), and the Cu content from fertilized groups in serums and livers was significantly decreased (P < 0.05). The levels of blood Hb and RBC, and the activities of serum SOD, CAT, GSH-Px, and Cp in group III, were significantly higher (P < 0.05) than those in the CON group, group I, and group II. Serum MDA content in group III was significantly lower (P < 0.05) than that in the other three groups. In summary, Mo fertilization improved the antioxidant capacity of grazing sheep and also reduced the toxic damage to Chinese Merino sheep grazing on natural grasslands contaminated by heavy metals, but Mo poisoning caused by excessive fertilization should be prevented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Reis LSLS, Pardo PE, Camargos AS, Oba E (2010) Mineral element and heavy metal poisoning in animals. J Med Med Sci 1(12):560–579

    Google Scholar 

  2. Zhao XG, Li ZL, Wang DL, Li J, Zou B, Tao Y, Lei LM, Qiao FY, Huang J (2019) Assessment of residents’ total environmental exposure to heavy metals in China. Sci Rep 9(1):16386. https://doi.org/10.1038/s41598-019-52649-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gall JE, Boyd RS, Rajakaruna N (2015) Transfer of heavy metals through terrestrial food webs: a review. Environ Monit Assess 187(4):1–21. https://doi.org/10.1007/s10661-015-4436-3

    Article  CAS  Google Scholar 

  4. Wu P, Jiang LY, He Z, Song Y (2017) Treatment of metallurgical industry wastewater for organic contaminant removal in China: status, challenges, and perspectives. Environ Sci Water Res Technol 3(6):1015–1031. https://doi.org/10.1039/c7ew00097a

    Article  CAS  Google Scholar 

  5. Li YF, Shen XY, Liu FY, Luo L, Wang YC (2021) Molybdenum fertilization improved antioxidant capacity of grazing Nanjiang brown goat on copper-contaminated pasture. Biol Trace Elem Res 200(3):1156–1163. https://doi.org/10.1007/s12011-021-02735-w

    Article  CAS  PubMed  Google Scholar 

  6. Li HX, Ji HB, Shi CJ, Gao Y, Zhang Y, Xu XY, Ding HJ, Tang L, Xing YX (2017) Distribution of heavy metals and metalloids in bulk and particle size fractions of soils from coalmine brownfield and implications on human health. Chemosphere 172:505–515. https://doi.org/10.1016/j.chemosphere.2017.01.021

    Article  CAS  PubMed  Google Scholar 

  7. Shen XY, Song CJ (2021) Responses of Chinese Merino sheep (Junken Type) on copper-deprived natural pasture. Biol Trace Elem Res 199(3):989–995. https://doi.org/10.1007/s12011-020-02214-8

    Article  CAS  PubMed  Google Scholar 

  8. Heidari AH, Zamiri MJ, Nazem MN, Shirazi MRJ, Akhlaghi A, Pirsaraei ZA (2021) Detrimental effects of long-term exposure to heavy metals on histology, size and trace elements of testes and sperm parameters in Kermani sheep. Ecotoxicol Environ Saf 207:111563. https://doi.org/10.1016/j.ecoenv.2020.111563

    Article  CAS  PubMed  Google Scholar 

  9. Zhou SH, Zhang CY, Xiao QY, Zhuang Y, Gu XL, Yang F, Xing CH, Hu GL, Cao HB (2016) Effects of different levels of molybdenum on rumen microbiota and trace elements changes in tissues from goats. Biol Trace Elem Res 174(1):85–92. https://doi.org/10.1007/s12011-016-0706-3

    Article  CAS  PubMed  Google Scholar 

  10. Li YF, Wang YC, Shen XY, Liu FY (2021) The combinations of sulfur and molybdenum fertilizations improved antioxidant capacity of grazing Guizhou semi-fine wool sheep under copper and cadmium stress. Ecotoxicol Environ Saf 222:112520. https://doi.org/10.1016/j.ecoenv.2021.112520

    Article  CAS  PubMed  Google Scholar 

  11. Li YF, He J, Luo L, Wang YC (2021) The combinations of sulfur and molybdenum fertilization improved antioxidant capacity in grazing Nanjiang brown goat. Biol Trace Elem Res 200(2):600–608. https://doi.org/10.1007/s12011-021-02702-5

    Article  CAS  PubMed  Google Scholar 

  12. Lee MT, Lin WC, Yu B, Lee TT (2017) Antioxidant capacity of phytochemicals and their potential effects on oxidative status in animals-a review. Asian-Austral J Anim Sci 30(3):299–308. https://doi.org/10.5713/ajas.16.0438

    Article  CAS  Google Scholar 

  13. Liu YH, Yu MJ, Cui JW, Du Y, Teng XH, Zhang ZZ (2020) Heat shock proteins took part in oxidative stress-mediated inflammatory injury via NF-κB pathway in excess manganese-treated chicken livers. Ecotoxicol Environ Saf 226:112833. https://doi.org/10.1016/j.ecoenv.2021.112833

    Article  CAS  Google Scholar 

  14. Miao ZY, Zhang K, Bao RK, Li JX, Tang Y, Teng XY (2021) Th1/Th2 imbalance and heat shock proteins mediated inflammation via activating NF-κB pathway in chicken nervous system in vivo and in vitro. Environ Sci Pollut Res 28(32):44361–44437. https://doi.org/10.1007/s11356-021-13782-0

    Article  CAS  Google Scholar 

  15. Zhang JY, Cui JW, Wang YY, Lin X, Teng XH, Tang Y (2022) Complex molecular mechanism of ammonia-induced apoptosis in chicken peripheral blood lymphocytes: miR-27b-3p, heat shock proteins, immunosuppression, death receptor pathway, and mitochondrial pathway. Ecotoxicol Environ Saf 236:113471. https://doi.org/10.1016/j.ecoenv.2022.113471

    Article  CAS  PubMed  Google Scholar 

  16. Shah SWA, Chen DC, Zhang JY, Liu YL, Ishfaq M, Tang Y, Teng XH (2020) The effect of ammonia exposure on energy metabolism and mitochondrial dynamic proteins in chicken thymus: through oxidative stress, apoptosis, and autophagy. Ecotoxicol Environ Saf 206:111413. https://doi.org/10.1016/j.ecoenv.2020.111413

    Article  CAS  PubMed  Google Scholar 

  17. Han Q, Zhang JY, Sun Q, Xu YM, Teng XH (2020) Oxidative stress and mitochondrial dysfunction involved in ammonia-induced nephrocyte necroptosis in chickens. Ecotoxicol Environ Saf 203:110974. https://doi.org/10.1016/j.ecoenv.2020.110974

    Article  CAS  PubMed  Google Scholar 

  18. Chen JQ, Xu YM, Han Q, Yao YC, Xing HJ, Teng XH (2019) Immunosuppression, oxidative stress, and glycometabolism disorder caused by cadmium in common carp (Cyprinus carpio L.): application of transcriptome analysis in risk assessment of environmental contaminant cadmium. J Hazard Mater 366:386–394. https://doi.org/10.1016/j.jhazmat.2018.12.014

    Article  CAS  PubMed  Google Scholar 

  19. Jiao WY, Han Q, Xu YM, Jiang HJ, Xing HJ, Teng XH (2019) Impaired immune function and structural integrity in the gills of common carp (Cyprinuscarpio L.) caused by Chlorpyrifos exposure: through oxidative stress and apoptosis. Fish Shellfish Immun 86:239–245. https://doi.org/10.1016/j.fsi.2018.08.060

    Article  CAS  Google Scholar 

  20. Huo B, Wu T, Song CJ, Shen XY (2019) Studies of selenium deficiency in the Wumeng semi-fine wool sheep. Biol Trace Elem Res 194(1):152–158. https://doi.org/10.1007/s12011-019-01751-1

    Article  CAS  PubMed  Google Scholar 

  21. Li YF, Wang YC, Shen XY (2021) Effects of sulfur fertilization on antioxidant capacity of Wumeng semi-fine wool sheep in the Wumeng Prairie. Pol J Environ Stud 30(5):3919–3926. https://doi.org/10.15244/pjoes/132792

    Article  CAS  Google Scholar 

  22. Yao L, Peng T, Li J, Liu LZ, Xing WH, Jia XL, Yuan AW, Liu L (2017) Effect of liver biopsy on blood routine and liver function in peripartum goats. Prog Veter Med 38(6):128–131

    Google Scholar 

  23. Bao SD (2000) Soil agrochemical analysis [M]. China Agricultural Publishing House, Beijing, pp 22–42

    Google Scholar 

  24. Khan ZI, Ahmad K, Ashraf I, Khan A, Fardous A, Sher M, Akram NA, Ashraf M, Hayat Z, Laudadio V, Tufarelli V, Hussain A, Arshad F, Cazzato E (2016) Appraisal of trace metal elements in soil, forage and animal continuum: a case study on pasture irrigated with sewage water. Philipp Agricul Sci 99(1):80–87

    Google Scholar 

  25. Shen XY, Jiang HM, Yuan R, Jia ZH (2012) Effects of grassland fertilization on forage and grazing of Guizhou semi-fine wool sheep. Acta Pratacul Sin 21(3):275–280

    Google Scholar 

  26. Chi YK, Zhang ZZ, Song CJ, Xiong KN, Shen XY (2020) Effects of fertilization on physiological and biochemical parameters of Wumeng sheep in China’s Wumeng Prairie. Pol J Environ Stud 29(1):79–85. https://doi.org/10.15244/pjoes/100481

    Article  CAS  Google Scholar 

  27. Cui JZ, Wang XF, Hsu L, Matsubara JA (2009) Inflammation induced by photocoagulation laser is minimized by copper chelators. Lasers Med Sci 24:653–657. https://doi.org/10.1007/s10103-008-0577-8

    Article  PubMed  Google Scholar 

  28. Wei H, Zhang WJ, Leboeuf R, Frei B (2014) Copper induces–and copper chelation by tetrathiomolybdate inhibits–endothelial activation in vitro. Redox Rep 19(1):40–48. https://doi.org/10.1179/1351000213Y.0000000070

    Article  CAS  PubMed  Google Scholar 

  29. Soetan KO, Olaiya CO, Oyewole OA (2010) The importance of mineral elements for humans, domestic animals and plants-a review. Afr J Food Sci 4(5):200–222

    CAS  Google Scholar 

  30. Nishito Y, Kambe T (2018) Absorption mechanisms of iron, copper, and zinc: an overview. J Nutr Sci Vitaminol 6(1):1–7. https://doi.org/10.3177/jnsv.64.1

    Article  Google Scholar 

  31. Pott EB, Henry PR, Zanetti MA, Rao PV, JrEJ H, Ammerman CB (1999) Effects of high dietary molybdenum concentration and duration of feeding time on molybdenum and copper metabolism in sheep. Anim Feed Sci Technol 79(1-2):93–105. https://doi.org/10.1016/S0377-8401(99)00009-7

    Article  CAS  Google Scholar 

  32. Gould L, Kendall NR (2020) Role of the rumen in copper and thiomolybdate absorption. Nutr Res Rev 24(2):172–182. https://doi.org/10.1017/S0954422411000059

    Article  CAS  Google Scholar 

  33. Zhang D (2015) Cadmium poisoning and mechanism of zinc on cadmium poisoning. Huazhong Agricultural University, Wuhan

    Google Scholar 

  34. Chen JQ, Zhang S, Tong JY, Teng XJ, Zhang ZY, Li S, Teng XH (2020) Whole transcriptome-based miRNA-mRNA network analysis revealed the mechanism of inflammation-immunosuppressive damage caused by cadmium in common carp spleens. Sci Total Environ 717:137081. https://doi.org/10.1016/j.scitotenv.2020.137081

    Article  CAS  PubMed  Google Scholar 

  35. Li Z, Shah SWA, Zhou Q, Yin XJ, Teng XH (2021) The contributions of miR-25-3p, oxidative stress, and heat shock protein in a complex mechanism of autophagy caused by pollutant cadmium in common carp (Cyprinus carpio L.) hepatopancreas. Environ Pollut 287:117554. https://doi.org/10.1016/j.envpol.2021.117554

    Article  CAS  PubMed  Google Scholar 

  36. Zhang JQ, Zheng SF, Wang SC, Liu QQ, Xu SW (2020) Cadmium-induced oxidative stress promotes apoptosis and necrosis through the regulation of the miR-216a-PI3K/AKT axis in common carp lymphocytes and antagonized by selenium. Chemosphere 258:127341. https://doi.org/10.1016/j.chemosphere.2020.127341

    Article  CAS  PubMed  Google Scholar 

  37. GB 15618 (2018) Soil environmental quality risk control standard of soil contamination of agricultural land (trial). Ministry of Ecology and Environment of the People’s Republic of China, Beijing

    Google Scholar 

  38. Li YF, He J, Shen XY (2020) Effects of nano-selenium poisoning on immune function in the Wumeng semi-fine wool sheep. Biol Trace Elem Res 199(8):2919–2924. https://doi.org/10.1007/s12011-020-02408-0

    Article  CAS  PubMed  Google Scholar 

  39. Kananfchian M, Esmaeilzadeh S, Mahjoub S (2020) Status of serum copper, magnesium, and total antioxidant capacity in patients with polycystic ovary syndrome. Biol Trace Elem Res 193(1):111–117. https://doi.org/10.1007/s12011-019-01705-7

    Article  CAS  Google Scholar 

  40. Chen JQ, Chen DC, Li JX, Liu YL, Gu XH, Teng XH (2021) Cadmium-induced oxidative stress and immunosuppression mediated mitochondrial apoptosis via JNK-FoxO3a-PUMA pathway in common carp (Cyprinus carpio L.) gills. Aquat Toxicol 233:105775. https://doi.org/10.1016/j.aquatox.2021.105775

    Article  CAS  PubMed  Google Scholar 

  41. Zhao K, Chi YK, Shen XY (2020) Studies on edema pathema in Hequ horse in the Qinghai-Tibet Plateau. Biol Trace Elem Res 198(1):142–148. https://doi.org/10.1007/s12011-020-02043-9

    Article  CAS  PubMed  Google Scholar 

  42. Yildirim S, Ozkan C, Huyut Z, Çınar A (2019) Detection of Se, Vit. E, Vit. A, MDA, 8-OHdG, and CoQ10 levels and histopathological changes in heart tissue in sheep with white muscle disease. Biol Trace Elem Res 188(2):419–423. https://doi.org/10.1007/s12011-018-1434-7

    Article  CAS  PubMed  Google Scholar 

  43. Iqra B, Moolachand M, Pershotam K, Saeed AS, Hira S (2019) Effect of dietary selenium yeast supplementation on morphology and antioxidant status in tests of young goat. Pak J Zool 51:979–988

    Google Scholar 

  44. Zhao K, Huo B, Shen XY (2020) Studies on antioxidant capacity in selenium-deprived the Choko yak in the Shouqu prairie. Biol Trace Elem Res 199(9):3297–3302. https://doi.org/10.1007/s12011-020-02461-9

    Article  CAS  PubMed  Google Scholar 

  45. Shen XY, Huo B, Li YF, Song CJ, Wu T, He J (2021) Response of the critically endangered Przewalski’s gazelle (Procapra przewalskii) to selenium deprived environment. J Proteome 241:104218. https://doi.org/10.1016/j.jprot.2021.104218

    Article  CAS  Google Scholar 

  46. Jin X, Liu CP, Teng XH, Fu J (2016) Effects of dietary selenium against lead toxicity are related to the ion profile in chicken muscle. Biol Trace Elem Res 172:496–503. https://doi.org/10.1007/s12011-015-0585-z

    Article  CAS  PubMed  Google Scholar 

  47. Yang ZJ, Liu C, Liu CP, Teng XH, Li S (2016) Selenium deficiency mainly influences antioxidant selenoproteins expression in broiler immune organs. Biol Trace Elem Res 172(1):209–221. https://doi.org/10.1007/s12011-015-0578-y

    Article  CAS  PubMed  Google Scholar 

  48. Shen XY, Song CJ, Wu T (2020) Effects of nano-copper on antioxidant function in copper-deprived Guizhou black goats. Biol Trace Elem Res 199(6):2201–2207. https://doi.org/10.1007/s12011-020-02342-1

    Article  CAS  PubMed  Google Scholar 

  49. Chen XM, Bi MY, Yang J, Cai JZ, Zhang HR, Zhu Y, Zheng YY, Liu Q, Shi GL, Zhang ZW (2021) Cadmium exposure triggers oxidative stress, necroptosis, Th1/Th2 imbalance and promotes inflammation through the TNF-alpha/NF-Kappa B pathway in swine small intestine. J Hazard Mater 421:126704. https://doi.org/10.1016/j.jhazmat.2021.126704

    Article  CAS  PubMed  Google Scholar 

  50. Li Z, Miao ZY, Ding LL, Teng XH, Bao J (2021) Energy metabolism disorder mediated ammonia gas-induced autophagy via AMPK/mTOR/ULK1-Beclin1 pathway in chicken livers. Ecotoxicol Environ Saf 217:112219. https://doi.org/10.1016/j.ecoenv.2021.112219

    Article  CAS  PubMed  Google Scholar 

  51. Li YF, He J, Shen XY, Zhao K (2021) Effects of foliar application of nano-molybdenum fertilizer on copper metabolism of grazing Chinese Merino sheep (Junken type) on natural grasslands under copper and cadmium stress. Biol Trace Elem Res. https://doi.org/10.1007/s12011-021-02889-7

  52. Liu CL, Li YF, Li HY, Wang YC, Zhao K (2021) Nano-selenium and Macleaya cordata extracts improved immune functions of intrauterine growth retardation piglets under maternal oxidation stress. Biol Trace Elem Res. https://doi.org/10.1007/s12011-021-03009-1

Download references

Funding

This study was financially supported by the Innovation and Development Supporting Plan Project of Key Industries in Southern Xinjiang (2021DB014) and the Modern Agricultural Industry Technology System (CARS-38).

Author information

Authors and Affiliations

Authors

Contributions

Yuanfeng Li: Conceptualization, Methodology, Preparation, Investigation, Software, Data curation, Formal analysis, Resources, Writing-original draft. Ping Zhou: Investigation, Software, Data curation, Formal analysis, Writing—original draft. Xiaoyun Shen: Funding acquisition, Supervision, Conceptualization, Methodology, Investigation, Project administration, Resources, Writing—reviewing and editing. Kui Zhao: Preparation, Investigation, Software, Data curation, Formal analysis.

Corresponding author

Correspondence to Xiaoyun Shen.

Ethics declarations

Ethics approval and consent to participate

The protocol for the present experiment was approved by the Institutional Animal Care and Use Committee of the Southwest University of Science and Technology (SWUST20210129).

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Zhou, P., Shen, X. et al. Molybdenum fertilizer improved antioxidant capacity of Chinese Merino sheep under compound contamination. Biol Trace Elem Res 201, 1717–1725 (2023). https://doi.org/10.1007/s12011-022-03266-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-022-03266-8

Keywords

Navigation