Skip to main content
Log in

Arsenic Trioxide Triggers Mitochondrial Dysfunction, Oxidative Stress, and Apoptosis via Nrf 2/Caspase 3 Signaling Pathway in Heart of Ducks

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

A Correction to this article was published on 07 May 2022

This article has been updated

Abstract

Arsenic is a common environmental pollutant and poses a serious threat to human and animal health. In this study, we used the ducks to mimic arsenic trioxide (ATO) exposure and investigated the mechanism of cardiac toxicity. The results indicated that ATO inhibited the body and organ growth of ducks, led to an increase in LDH content, and caused obvious deformity, ischemia infarction. It is found that ATO exacerbated the swell of mitochondrial and the contraction of cell nuclei in the heart of ducks through transmission electron microscopy (TEM). ATO also induced an increase in MDA content; inhibited the activation of the Nrf 2 pathway; downregulated the expression of mRNA and protein of Nrf 2, HO-1, and SOD-1; and upregulated the expression of mRNA and protein of Keap 1. At the same time, ATO induced apoptosis which not only upregulated the expression levels of mRNA and proteins (Caspase 3, Cyt-C, P53, Bax) but also decreased the mRNA and protein expression level of Bcl-2. These results indicated that ATO can lead to oxidative stress and apoptosis in the heart of ducks. In general, our research shows that ATO triggers mitochondrial dysfunction, oxidative stress, and apoptosis via Nrf 2/Caspase 3 signaling pathway in the heart of ducks.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

All relevant data and materials are available from the authors upon reasonable request.

Code Availability

Not applicable.

Change history

References

  1. Vineetha VP, Raghu KG (2019) An overview on arsenic trioxide-induced cardiotoxicity. Cardiovasc Toxicol 19(2):105–119. https://doi.org/10.1007/s12012-018-09504-7

    Article  CAS  Google Scholar 

  2. Hughes MF, Beck BD, Chen Y, Lewis AS, Thomas DJ (2011) Arsenic exposure and toxicology: a historical perspective. Toxicol Sci 123(2):305–332. https://doi.org/10.1093/toxsci/kfr184

    Article  CAS  Google Scholar 

  3. Cervantes C, Ji G, Ramirez JL, Silver S (1994) Resistance to arsenic compounds in microorganisms. Fems Microbiol Rev 15(4):355–367. https://doi.org/10.1111/j.1574-6976.1994.tb00145.x

    Article  CAS  Google Scholar 

  4. Kang Y, Liu G, Chou CL, Wong MH, Zheng L, Ding R (2011) Arsenic in Chinese coals: distribution, modes of occurrence, and environmental effects. Sci Total Environ 412–413:1–13. https://doi.org/10.1016/j.scitotenv.2011.10.026

    Article  CAS  Google Scholar 

  5. Leaphart JC, Oldenkamp RE, Bryan AL, Kennamer RA, Beasley JC (2020) Patterns of trace element accumulation in waterfowl restricted to impoundments holding coal combustion waste. Environ Toxicol Chem 39(5):1052–1059. https://doi.org/10.1002/etc.4697

    Article  CAS  Google Scholar 

  6. Fu Z, Xi S (2020) The effects of heavy metals on human metabolism. Toxicol Mech Method 30(3):167–176. https://doi.org/10.1080/15376516.2019.1701594

    Article  CAS  Google Scholar 

  7. Wu S, Yu W, Jiang X, Huang R, Zhang X, Lan J, Zhong G, Wan F, Tang Z, Hu L (2021) Protective effects of curcumin on ATO-induced nephrotoxicity in ducks in relation to suppressed autophagy, apoptosis and dyslipidemia by regulating oxidative stress. Ecotox Environ Safe 219:112350. https://doi.org/10.1016/j.ecoenv.2021.112350

    Article  CAS  Google Scholar 

  8. Li SW, Sun X, He Y, Guo Y, Zhao HJ, Hou ZJ, Xing MW (2017) Assessment of arsenic trioxide in the heart of Gallus gallus: alterations of oxidative damage parameters, inflammatory cytokines, and cardiac enzymes. Environ Sci Pollut Res Int 24(6):5781–5790. https://doi.org/10.1007/s11356-016-8223-7

    Article  CAS  Google Scholar 

  9. Jomova K, Jenisova Z, Feszterova M, Baros S, Liska J, Hudecova D, Rhodes CJ, Valko M (2011) Arsenic: toxicity, oxidative stress and human disease. J Appl Toxicol 31(2):95–107. https://doi.org/10.1002/jat.1649

    Article  CAS  Google Scholar 

  10. Yang HY, Lee TH (2015) Antioxidant enzymes as redox-based biomarkers: a brief review. Bmb Rep 48(4):200–208. https://doi.org/10.5483/bmbrep.2015.48.4.274

    Article  CAS  Google Scholar 

  11. Liao J, Yang F, Chen H, Yu W, Han Q, Li Y, Hu L, Guo J, Pan J, Liang Z, Tang Z (2019) Effects of copper on oxidative stress and autophagy in hypothalamus of broilers. Ecotoxicol Environ Saf 185:109710. https://doi.org/10.1016/j.ecoenv.2019.109710

    Article  CAS  Google Scholar 

  12. Wasik U, Milkiewicz M, Kempinska-Podhorodecka A, Milkiewicz P (2017) Protection against oxidative stress mediated by the Nrf2/Keap1 axis is impaired in Primary Biliary Cholangitis. Sci Rep-Uk 7(1):44769. https://doi.org/10.1038/srep44769

    Article  Google Scholar 

  13. Ashino T, Yamamoto M, Numazawa S (2016) Nrf2/Keap1 system regulates vascular smooth muscle cell apoptosis for vascular homeostasis: role in neointimal formation after vascular injury. Sci Rep-Uk 6(1):26291. https://doi.org/10.1038/srep26291

    Article  CAS  Google Scholar 

  14. Taguchi K, Motohashi H, Yamamoto M (2011) Molecular mechanisms of the Keap1-Nrf2 pathway in stress response and cancer evolution. Genes Cells 16(2):123–140. https://doi.org/10.1111/j.1365-2443.2010.01473.x

    Article  CAS  Google Scholar 

  15. You L, Yang C, Du Y, Liu Y, Chen G, Sai N, Dong X, Yin X, Ni J (2019) Matrine exerts hepatotoxic effects via the ROS-dependent mitochondrial apoptosis pathway and inhibition of Nrf2-mediated antioxidant response. Oxid Med Cell Longev 2019:1–15. https://doi.org/10.1155/2019/1045345

    Article  CAS  Google Scholar 

  16. Wang C, Nie G, Yang F, Chen J, Zhuang Y, Dai X, Liao Z, Yang Z, Cao H, Xing C, Hu G, Zhang C (2020) Molybdenum and cadmium co-induce oxidative stress and apoptosis through mitochondria-mediated pathway in duck renal tubular epithelial cells. J Hazard Mater 383:121157. https://doi.org/10.1016/j.jhazmat.2019.121157

    Article  CAS  Google Scholar 

  17. Müller LUW, Milsom MD, Harris CE, Vyas R, Brumme KM, Parmar K, Moreau LA, Schambach A, Park I, London WB, Strait K, Schlaeger T, Devine AL, Grassman E, D’Andrea A, Daley GQ, Williams DA (2012) Overcoming reprogramming resistance of Fanconi anemia cells. Blood 119(23):5449–5457. https://doi.org/10.1182/blood-2012-02-408674

    Article  CAS  Google Scholar 

  18. Jabbour AM, Daunt CP, Green BD, Vogel S, Gordon L, Lee RS, Silke N, Pearson RB, Vandenberg CJ, Kelly PN, Nutt SL, Strasser A, Borner C, Ekert PG (2010) Myeloid progenitor cells lacking p53 exhibit delayed up-regulation of Puma and prolonged survival after cytokine deprivation. Blood 115(2):344–352. https://doi.org/10.1182/blood-2009-07-230730

    Article  CAS  Google Scholar 

  19. Ge X, Pan M, Wang L, Li W, Jiang C, He J, Abouzid K, Liu L, Shi Z, Jiang B (2018) Hypoxia-mediated mitochondria apoptosis inhibition induces temozolomide treatment resistance through miR-26a/Bad/Bax axis. Cell Death Dis 9(11):1128. https://doi.org/10.1038/s41419-018-1176-7

    Article  CAS  Google Scholar 

  20. Rao VK, Oliveira JB (2011) How I treat autoimmune lymphoproliferative syndrome. Blood 118(22):5741–5751. https://doi.org/10.1182/blood-2011-07-325217

    Article  CAS  Google Scholar 

  21. Cui T, Jiang W, Yang F, Luo J, Hu R, Cao H, Hu G, Zhang C (2021) Molybdenum and cadmium co-induce hypothalamus toxicity in ducks via disturbing Nrf2-mediated defense response and triggering mitophagy. Ecotoxicol Environ Saf 228:113022. https://doi.org/10.1016/j.ecoenv.2021.113022

    Article  CAS  Google Scholar 

  22. Wu S, Rao G, Wang R, Pang Q, Zhang X, Huang R, Li T, Tang Z, Hu L (2021) The neuroprotective effect of curcumin against ATO triggered neurotoxicity through Nrf2 and NF-kappaB signaling pathway in the brain of ducks. Ecotoxicol Environ Saf 228:112965. https://doi.org/10.1016/j.ecoenv.2021.112965

    Article  CAS  Google Scholar 

  23. Wu S, Zhong G, Wan F, Jiang X, Tang Z, Hu T, Rao G, Lan J, Hussain R, Tang L, Zhang H, Huang R, Hu L (2021) Evaluation of toxic effects induced by arsenic trioxide or/and antimony on autophagy and apoptosis in testis of adult mice. Environ Sci Pollut R 28(39):54647–54660. https://doi.org/10.1007/s11356-021-14486-1

    Article  CAS  Google Scholar 

  24. Zhong G, Wan F, Wu S, Jiang X, Tang Z, Zhang X, Huang R, Hu L (2021) Arsenic or/and antimony induced mitophagy and apoptosis associated with metabolic abnormalities and oxidative stress in the liver of mice. Sci Total Environ 777:146082. https://doi.org/10.1016/j.scitotenv.2021.146082

    Article  CAS  Google Scholar 

  25. Zhong G, Wan F, Lan J, Jiang X, Wu S, Pan J, Tang Z, Hu L (2021) Arsenic exposure induces intestinal barrier damage and consequent activation of gut-liver axis leading to inflammation and pyroptosis of liver in ducks. Sci Total Environ 788:147780. https://doi.org/10.1016/j.scitotenv.2021.147780

    Article  CAS  Google Scholar 

  26. Wu S, Yu W, Jiang X, Huang R, Zhang X, Lan J, Zhong G, Wan F, Tang Z, Hu L (2021) Protective effects of curcumin on ATO-induced nephrotoxicity in ducks in relation to suppressed autophagy, apoptosis and dyslipidemia by regulating oxidative stress. Ecotoxicol Environ Saf 219:112350. https://doi.org/10.1016/j.ecoenv.2021.112350

    Article  CAS  Google Scholar 

  27. Flora SJ (2011) Arsenic-induced oxidative stress and its reversibility. Free Radic Biol Med 51(2):257–281. https://doi.org/10.1016/j.freeradbiomed.2011.04.008

    Article  CAS  Google Scholar 

  28. Li X, Yi H, Wang H (2018) Sulphur dioxide and arsenic affect male reproduction via interfering with spermatogenesis in mice. Ecotoxicol Environ Saf 165:164–173. https://doi.org/10.1016/j.ecoenv.2018.08.109

    Article  CAS  Google Scholar 

  29. Meng P, Zhang S, Jiang X, Cheng S, Zhang J, Cao X, Qin X, Zou Z, Chen C (2020) Arsenite induces testicular oxidative stress in vivo and in vitro leading to ferroptosis. Ecotox Environ Safe 194:110360. https://doi.org/10.1016/j.ecoenv.2020.110360

    Article  CAS  Google Scholar 

  30. Xie Z, Shen G, Wang Y, Wu C (2019) Curcumin supplementation regulates lipid metabolism in broiler chickens. Poultry Sci 98(1):422–429. https://doi.org/10.3382/ps/pey315

    Article  CAS  Google Scholar 

  31. Zhang Y, Ma X, Zhang T, Qin M, Sun B, Li Q, Hu D, Ren L (2019) Protective effects of Apocynum venetum against Pirarubicin-induced cardiotoxicity. Am J Chin Med 47(05):1075–1097. https://doi.org/10.1142/S0192415X19500551

    Article  CAS  Google Scholar 

  32. Sun TL, Liu Z, Qi ZJ, Huang YP, Gao XQ, Zhang YY (2016) (-)-Epigallocatechin-3-gallate (EGCG) attenuates arsenic-induced cardiotoxicity in rats. Food Chem Toxicol 93:102–110. https://doi.org/10.1016/j.fct.2016.05.004

    Article  CAS  Google Scholar 

  33. Li S, Sun X, He Y, Guo Y, Zhao H, Hou Z, Xing M (2017) Assessment of arsenic trioxide in the heart of Gallus gallus: alterations of oxidative damage parameters, inflammatory cytokines, and cardiac enzymes. Environ Sci Pollut R 24(6):5781–5790. https://doi.org/10.1007/s11356-016-8223-7

    Article  CAS  Google Scholar 

  34. Liguori I, Russo G, Curcio F, Bulli G, Aran L, Della-Morte D, Gargiulo G, Testa G, Cacciatore F, Bonaduce D, Abete P (2018) Oxidative stress, aging, and diseases. Clin Interv Aging 13:757–772. https://doi.org/10.2147/CIA.S158513

    Article  CAS  Google Scholar 

  35. Gao S, Duan X, Wang X, Dong D, Liu D, Li X, Sun G, Li B (2013) Curcumin attenuates arsenic-induced hepatic injuries and oxidative stress in experimental mice through activation of Nrf2 pathway, promotion of arsenic methylation and urinary excretion. Food Chem Toxicol 59:739–747. https://doi.org/10.1016/j.fct.2013.07.032

    Article  CAS  Google Scholar 

  36. Hirano S, Cui X, Li S, Kanno S, Kobayashi Y, Hayakawa T, Shraim A (2003) Difference in uptake and toxicity of trivalent and pentavalent inorganic arsenic in rat heart microvessel endothelial cells. Arch Toxicol 77(6):305–312. https://doi.org/10.1007/s00204-003-0447-x

    Article  CAS  Google Scholar 

  37. Li N, Sun Y, He L, Huang L, Li T, Wang T, Tang L (2020) Amelioration by Idesia polycarpa Maxim. var. vestita Diels. of oleic acid-induced nonalcoholic fatty liver in HepG2 cells through antioxidant and modulation of lipid metabolism. Oxid Med Cell Longev 2020:1–13. https://doi.org/10.1155/2020/1208726

    Article  CAS  Google Scholar 

  38. Yuan S, Yang Y, Li J, Tan X, Cao Y, Li S, Hong H, Liu L, Zhang Q (2020) Ganoderma lucidum Rhodiola compound preparation prevent d-galactose-induced immune impairment and oxidative stress in aging rat model. Sci Rep-Uk 10(1):19244. https://doi.org/10.1038/s41598-020-76249-1

    Article  CAS  Google Scholar 

  39. Pan L, Zhao Y, Farouk MH, Bao N, Wang T, Qin G (2018) Integrins were involved in soybean agglutinin induced cell apoptosis in IPEC-J2. Int J Mol Sci 19(2):587. https://doi.org/10.3390/ijms19020587

    Article  CAS  Google Scholar 

  40. Rahaman MS, Banik S, Akter M, Rahman MM, Sikder MT, Hosokawa T, Saito T, Kurasaki M (2020) Curcumin alleviates arsenic-induced toxicity in PC12 cells via modulating autophagy/apoptosis. Ecotoxicol Environ Saf 200:110756. https://doi.org/10.1016/j.ecoenv.2020.110756

    Article  CAS  Google Scholar 

  41. Shi M, Zhou L, Zhao L, Shang M, He T, Tang Z, Sun H, Ren P, Lin Z, Chen T, Yu J, Xu J, Yu X, Huang Y (2017) Csseverin inhibits apoptosis through mitochondria-mediated pathways triggered by Ca2 + dyshomeostasis in hepatocarcinoma PLC cells. PLoS Negl Trop Dis 11(11):e6074. https://doi.org/10.1371/journal.pntd.0006074

    Article  CAS  Google Scholar 

  42. Savulescu D, Feng J, Ping YS, Mai O, Boehm U, He B, O’Malley BW, Melamed P (2013) Gonadotropin-releasing hormone-regulated prohibitin mediates apoptosis of the gonadotrope cells. Mol Endocrinol 27(11):1856–1870. https://doi.org/10.1210/me.2013-1210

    Article  CAS  Google Scholar 

  43. Sakurai T, Ochiai M, Kojima C, Ohta T, Sakurai MH, Takada NO, Qu W, Waalkes MP, Himeno S, Fujiwara K (2005) Preventive mechanism of cellular glutathione in monomethylarsonic acid-induced cytolethality. Toxicol Appl Pharmacol 206(1):54–65. https://doi.org/10.1016/j.taap.2004.11.008

    Article  CAS  Google Scholar 

  44. Mi X, Hou J, Wang Z, Han Y, Ren S, Hu J, Chen C, Li W (2018) The protective effects of maltol on cisplatin-induced nephrotoxicity through the AMPK-mediated PI3K/Akt and p53 signaling pathways. Sci Rep-Uk 8(1):15922. https://doi.org/10.1038/s41598-018-34156-6

    Article  CAS  Google Scholar 

  45. Liu Y, Huang J, Zheng X, Yang X, Ding Y, Fang T, Zhang Y, Wang S, Zhang X, Luo X, Guo A, Newell KA, Yu Y, Huang X (2017) Luteolin, a natural flavonoid, inhibits methylglyoxal induced apoptosis via the mTOR/4E-BP1 signaling pathway. Sci Rep-Uk 7(1):7877. https://doi.org/10.1038/s41598-017-08204-6

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (#31402264), the Guangzhou Science and Technology Program key projects (#201803020003), and Program of Department of Natural Resources of Guangdong Province (Nos. GDME2018C014 and GDNRC [2020]038).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Gan Rao; methodology: Gan Rao, Gaolong Zhong, Shaofeng Wu; formal analysis and investigation: Gan Rao, Gaolong Zhong; writing-original draft preparation: Gan Rao; writing — review and editing: Jiajia Tan, Lianmei Hu; funding acquisition: Lianmei Hu; resources: Lianmei Hu; supervision: Xiaoyong Zhang, Riming Huang, Zhaoxin Tang, Lianmei Hu.

Corresponding author

Correspondence to Lianmei Hu.

Ethics declarations

Ethics Declarations

All animal procedures and experimental methods in this research were authorized by the Ethics Committee of South China Agricultural University. The treatment of animals in all experiments conforms to the ethical standards of experimental animals.

Consent to Participate

Not applicable.

Consent for Publication

All authors agree for publication.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original version of this article was revised to correct Figures 5 and 6.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rao, G., Zhong, G., Hu, T. et al. Arsenic Trioxide Triggers Mitochondrial Dysfunction, Oxidative Stress, and Apoptosis via Nrf 2/Caspase 3 Signaling Pathway in Heart of Ducks. Biol Trace Elem Res 201, 1407–1417 (2023). https://doi.org/10.1007/s12011-022-03219-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-022-03219-1

Keywords

Navigation