Skip to main content
Log in

Lithium Chloride Promotes Milk Protein and Fat Synthesis in Bovine Mammary Epithelial Cells via HIF-1α and β-Catenin Signaling Pathways

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Lithium is one of the trace elements with many physiological properties, such as being anti-cancer, anti-viral, and anti-inflammatory. However, little is known about its effect on milk synthesis during lactation. Therefore, we selected different concentrations (5 mM, 10 mM, and 20 mM) of lithium chloride (LiCl) and assessed the effect of LiCl on bovine mammary epithelial (MAC-T) cells that underwent 4 days of differentiation induction. Moreover, we analyzed the effect of LiCl on the expression of genes related to milk fat and milk protein synthesis. Herein, LiCl (5–20 mM) significantly increased the expression of β-casein, promoted mRNA expression and phosphorylated protein expression of the signal transduction molecule and activator of transcription 5β (STAT5-β), and inhibited mRNA and protein expression of suppressor of cytokine signaling 2 (SOCS2). In contrast, 5 and 10 mM LiCl significantly inhibited expression of SOCS3. LiCl at concentration of 5–20 mM enhanced phosphorylation level of mTOR protein; at 10 mM and 20 mM, LiCl significantly promoted expression and phosphorylation of downstream ribosomal protein S6 kinase beta-1 (S6K1) protein. Considering milk fat synthesis, mRNA expression of acetyl CoA carboxylase (ACC) and lipoprotein lipase (LPL) genes was considerably increased in the presence of LiCl (5–20 mM). Additionally, increased protein expression levels of stearoyl-CoA desaturase (SCD), peroxisome proliferator–activated receptor-γ (PPARγ), and sterol regulatory element-binding protein 1 (SREBP1) were observed at all LiCl concentrations tested. Subsequently, LiCl (5–20 mM) significantly promoted protein expression and phosphorylation of β-catenin, while 10 mM and 20 mM of LiCl significantly promoted protein expression of hypoxia-inducible factor-1α (HIF-1α). Collectively, it has been shown that 10 mM LiCl can effectively activate HIF-1α, β-catenin, and β-catenin downstream signaling pathways. Conversely, at 10 mM, LiCl inhibited SOCS2 and SOCS3 protein expression through JAK2/STAT5, mTOR, and SREBP1 signaling pathways, improving synthesis of milk protein and fat. Therefore, LiCl can be used as a potential nutrient to regulate milk synthesis in dairy cows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Data are available for consultation upon request to the corresponding author.

References

  1. Shahzad B, Mughal MN, Tanveer M, Gupta D, Abbas G (2017) Is lithium biologically an important or toxic element to living organisms? An overview. Environ Sci Pollut Res 24(1):103–115. https://doi.org/10.1007/s11356-016-7898-0

    Article  CAS  Google Scholar 

  2. Nguyen LD, Fischer TT, Ehrlich BE (2021) Pharmacological rescue of cognitive function in a mouse model of chemobrain. Mol Neurodegener 16(1):41. https://doi.org/10.1186/s13024-021-00463-2

  3. Anmella G, Fico G, Lotfaliany M, Hidalgo-Mazzei D, Soto-Angona O, Gimenez-Palomo A, Amoretti S, Murru A, Radua J, Solanes A, Pacchiarotti I, Verdolini N, Cowdery S, Dodd S, Williams LJ, Mohebbi M, Carvalho AF, Kessing LV, Vieta E, Berk M (2021) Risk of cancer in bipolar disorder and the potential role of lithium: international collaborative systematic review and meta-analyses. Neurosci Biobehav Rev 126:529–541. https://doi.org/10.1016/j.neubiorev.2021.03.034

    Article  CAS  Google Scholar 

  4. Lee JH, Kim SW, Kim JH, Kim HJ, Um J, Jung DW, Williams DR (2021) Lithium chloride protects against sepsis-induced skeletal muscle atrophy and cancer cachexia. Cells 10(5):1017. https://doi.org/10.3390/cells10051017

    Article  CAS  Google Scholar 

  5. Wen J, Sawmiller D, Wheeldon B, Tan J (2019) A review for lithium: pharmacokinetics, drug design, and toxicity. CNS Neurol Disord Drug Targets 18(10):769–778. https://doi.org/10.2174/1871527318666191114095249

    Article  CAS  Google Scholar 

  6. Schrauzer GN (2002) Lithium: occurrence, dietary intakes, nutritional essentiality. J Am Coll Nutr 21(1):14–21. https://doi.org/10.1080/07315724.2002.10719188

    Article  CAS  Google Scholar 

  7. Manuelian CL, Albanell E, Rovai M, Caja G, Guitart R (2015) Kinetics of lithium as a lithium chloride dose suitable for conditioned taste aversion in lactating goats and dry sheep. J Anim Sci 93(2):562–569. https://doi.org/10.2527/jas.2014-8223

    Article  CAS  Google Scholar 

  8. Ralphs MH (1999) Lithium residue in milk from doses used to condition taste aversions and effects on nursing calves. Appl Anim Behav Sci 61(4):285–293. https://doi.org/10.1016/S0168-1591(98)00199-3

    Article  Google Scholar 

  9. Alexander CM (2021) Wnt signaling and mammary stem cells. Vitam Horm 116:21–50. https://doi.org/10.1016/bs.vh.2021.02.001

    Article  Google Scholar 

  10. Szyk-Warszynska L, Raszka K, Warszynski P (2019) Interactions of casein and polypeptides in multilayer films studied by FTIR and molecular dynamics. Polymers (Basel) 11(5):920. https://doi.org/10.3390/polym11050920

    Article  CAS  Google Scholar 

  11. Greenberg R, Groves ML, Dower HJ (1984) Human beta-casein. Amino acid sequence and identification of phosphorylation sites. J Biol Chem 259(8):5132–5138

    Article  CAS  Google Scholar 

  12. Jiang Q, He L, Hou Y, Chen J, Duan Y, Deng D, Wu G, Yin Y, Yao K (2016) Alpha-ketoglutarate enhances milk protein synthesis by porcine mammary epithelial cells. Amino Acids 48(9):2179–2188. https://doi.org/10.1007/s00726-016-2249-5

    Article  CAS  Google Scholar 

  13. Yang L, Yang Q, Li F, Yi W, Liu F, Wang S, Jiang Q (2020) Effects of dietary supplementation of lauric acid on lactation function, mammary gland development, and serum lipid metabolites in lactating mice. Animals (Basel) 10(3):529. https://doi.org/10.3390/ani10030529

    Article  Google Scholar 

  14. Zhong W, Shen J, Liao X, Liu X, Zhang J, Zhou C, Jin Y (2020) Camellia (Camellia oleifera Abel.) seed oil promotes milk fat and protein synthesis-related gene expression in bovine mammary epithelial cells. Food Sci Nutr 8(1):419–427. https://doi.org/10.1002/fsn3.1326

    Article  CAS  Google Scholar 

  15. Liao XD, Zhou CH, Zhang J, Shen JL, Wang YJ, Jin YC, Li SL (2020) Effect of all-trans retinoic acid on casein and fatty acid synthesis in MAC-T cells. Asian-Australas J Anim Sci 33(6):1012–1022. https://doi.org/10.5713/ajas.19.0315

    Article  CAS  Google Scholar 

  16. Yang JX, Wang CH, Xu QB, Zhao FQ, Liu JX, Liu HY (2015) Methionyl-methionine promotes alpha-s1 casein synthesis in bovine mammary gland explants by enhancing intracellular substrate availability and activating JAK2-STAT5 and mTOR-mediated signaling pathways. J Nutr 145(8):1748–1753. https://doi.org/10.3945/jn.114.208330

    Article  CAS  Google Scholar 

  17. Ricoult SJH, Yecies JL, Ben-Sahra I, Manning BD (2016) Oncogenic PI3K and K-Ras stimulate de novo lipid synthesis through mTORC1 and SREBP. Oncogene 35(10):1250–1260. https://doi.org/10.1038/onc.2015.179

    Article  CAS  Google Scholar 

  18. Fan Y, Yan LT, Yao Z, Xiong GY (2021) Biochanin A regulates cholesterol metabolism further delays the progression of nonalcoholic fatty liver disease. Diabetes Metab Syndr Obes 14:3161–3172. https://doi.org/10.2147/DMSO.S315471

    Article  Google Scholar 

  19. Li N, Zhao F, Wei CJ, Liang MY, Zhang N, Wang CM, Li QZ, Gao XJ (2014) Function of SREBP1 in the milk fat synthesis of dairy cow mammary epithelial cells. Int J Mol Sci 15(9):16998–17013. https://doi.org/10.3390/ijms150916998

    Article  CAS  Google Scholar 

  20. Yang PP, Li CS, Kou YY, Jiang YJ, Li DF, Liu SS, Lu YP, Hasegawa T, Li MQ (2021) Notum suppresses the osteogenic differentiation of periodontal ligament stem cells through the Wnt/Beta catenin signaling pathway. Arch Oral Biol 130:105211. https://doi.org/10.1016/j.archoralbio.2021.105211

  21. Rattanawarawipa P, Pavasant P, Osathanon T, Sukarawan W (2016) Effect of lithium chloride on cell proliferation and osteogenic differentiation in stem cells from human exfoliated deciduous teeth. Tissue Cell 48:425–431. https://doi.org/10.1016/j.tice.2016.08.005

    Article  CAS  Google Scholar 

  22. Heo JS, Lee SY, Lee JC (2010) Wnt/beta-catenin signaling enhances osteoblastogenic differentiation from human periodontal ligament fibroblasts. Mol Cells 30:449–454. https://doi.org/10.1007/s10059-010-0139-3

    Article  CAS  Google Scholar 

  23. Zhang Q, Zhang Q, Li H, Zhao X, Zhang H (2021) LiCl induces apoptosis via CHOP/NOXA/Mcl-1 axis in human choroidal melanoma cells. Cancer Cell Int 21:96. https://doi.org/10.1186/s12935-021-01778-2

    Article  CAS  Google Scholar 

  24. Chi YY, Shen JL, Zhang J, Shan AS, Niu SL, Zhou CH, Lee HG, Jin YC (2016) Lithium chloride’s inhibition of 3T3-L1 cell differentiation by regulating the Wnt/beta-catenin pathway and enhancing villin 2 expression. Food Sci Biotechnol 25:1147–1153. https://doi.org/10.1007/s10068-016-0183-7

    Article  CAS  Google Scholar 

  25. Rius AG, Appuhamy JA, Cyriac J, Kirovski D, Becvar O, Escobar J, McGilliard ML, Bequette BJ, Akers RM, Hanigan MD (2010) Regulation of protein synthesis in mammary glands of lactating dairy cows by starch and amino acids. J Dairy Sci 93(7):3114–3127. https://doi.org/10.3168/jds.2009-2743

    Article  CAS  Google Scholar 

  26. Mapes J, Li Q, Kannan A, Anandan L, Laws M, Lydon JP, Bagchi IC, Bagchi MK (2017) CUZD1 is a critical mediator of the JAK/STAT5 signaling pathway that controls mammary gland development during pregnancy. Plos Genet 13(3):e1006654. https://doi.org/10.1371/journal.pgen.1006654

    Article  CAS  Google Scholar 

  27. Nan X, Bu D, Li X, Wang J, Wei H, Hu H, Zhou L, Loor JJ (2014) Ratio of lysine to methionine alters expression of genes involved in milk protein transcription and translation and mTOR phosphorylation in bovine mammary cells. Physiol Genomics 46(7):268–275. https://doi.org/10.1152/physiolgenomics.00119.2013

    Article  CAS  Google Scholar 

  28. Cianciulli A, Calvello R, Porro C, Trotta T, Panaro MA (2017) Understanding the role of SOCS signaling in neurodegenerative diseases: current and emerging concepts. Cytokine Growth F R 37:67–79. https://doi.org/10.1016/j.cytogfr.2017.07.005

    Article  CAS  Google Scholar 

  29. Sun M, Tang C, Liu J, Jiang W, Yu H, Dong F, Huang C, Rixiati Y (2021) Comprehensive analysis of suppressor of cytokine signaling proteins in human breast Cancer. BMC Cancer 21(1):696. https://doi.org/10.1186/s12885-021-08434-y

    Article  CAS  Google Scholar 

  30. Geng Z, Shan X, Lian S, Wang J, Wu R (2021) LPS-induced SOCS3 antagonizes the JAK2-STAT5 pathway and inhibits beta-casein synthesis in bovine mammary epithelial cells. Life Sci 278:119547. https://doi.org/10.1016/j.lfs.2021.119547

    Article  CAS  Google Scholar 

  31. Kim WS, Kim MJ, Kim DO, Byun JE, Huy H, Song HY, Park YJ, Kim TD, Yoon SR, Choi EJ, Jung H, Choi I (2017) Suppressor of cytokine signaling 2 negatively regulates NK cell differentiation by inhibiting JAK2 activity. Sci Rep 7:46153. https://doi.org/10.1038/srep46153

    Article  CAS  Google Scholar 

  32. Zhuo MQ, Pan YX, Wu K, Xu YH, Luo Z (2017) Characterization and mechanism of phosphoinositide 3-kinases (PI3Ks) members in insulin-induced changes of protein metabolism in yellow catfish Pelteobagrus fulvidraco. Gen Comp Endocrinol 247:34–45. https://doi.org/10.1016/j.ygcen.2017.04.002

    Article  CAS  Google Scholar 

  33. Reed AS, Unger EK, Olofsson LE, Piper ML, Myers MG Jr, Xu AW (2010) Functional role of suppressor of cytokine signaling 3 upregulation in hypothalamic leptin resistance and long-term energy homeostasis. Diabetes 59(4):894–906. https://doi.org/10.2337/db09-1024

    Article  CAS  Google Scholar 

  34. Li S, Hosseini A, Danes M, Jacometo C, Liu J, Loor JJ (2016) Essential amino acid ratios and mTOR affect lipogenic gene networks and miRNA expression in bovine mammary epithelial cells. J Anim Sci Biotechnol 7:44. https://doi.org/10.1186/s40104-016-0104-x

    Article  CAS  Google Scholar 

  35. Lee MS, Kim JS, Cho SM, Lee SO, Kim SH, Lee HJ (2015) Fermented Rhus verniciflua stokes extract exerts an antihepatic lipogenic effect in oleic-acid-induced HepG2 cells via upregulation of AMP-activated protein kinase. J Agric Food Chem 63(32):7270–7276. https://doi.org/10.1021/acs.jafc.5b01954

    Article  CAS  Google Scholar 

  36. Bi Y, Yuan X, Zhu P, Chen Y, Chen G, Chang G (2020) A novel long noncoding RNA, ENSGALG00000021686, regulates the intracellular transport of fatty acids by targeting the FABP3 gene in chicken. Biochem Biophys Res Commun 528(4):706–712. https://doi.org/10.1016/j.bbrc.2020.05.133

    Article  CAS  Google Scholar 

  37. Osorio JS, Lohakare J, Bionaz M (2016) Biosynthesis of milk fat, protein, and lactose: roles of transcriptional and posttranscriptional regulation. Physiol Genomics 48(4):231–256. https://doi.org/10.1152/physiolgenomics.00016.2015

    Article  CAS  Google Scholar 

  38. Hao Z, Luo Y, Wang J, Hickford JGH, Zhou H, Hu J, Liu X, Li S, Shen J, Ke N, Liang W, Huang Z (2021) MicroRNA-432 inhibits milk fat synthesis by targeting SCD and LPL in ovine mammary epithelial cells. Food Funct 12(19):9432–9442. https://doi.org/10.1039/d1fo01260f

    Article  CAS  Google Scholar 

  39. Rincon G, Islas-Trejo A, Castillo AR, Bauman DE, German BJ, Medrano JF (2012) Polymorphisms in genes in the SREBP1 signalling pathway and SCD are associated with milk fatty acid composition in Holstein cattle. J Dairy Res 79(1):66–75. https://doi.org/10.1017/S002202991100080X

    Article  CAS  Google Scholar 

  40. Meng FG, Zhang XN, Liu SX, Wang YR, Zeng T (2020) Roles of peroxisome proliferator-activated receptor alpha in the pathogenesis of ethanol-induced liver disease. Chem Biol Interact 327:109176. https://doi.org/10.1016/j.cbi.2020.109176

    Article  CAS  Google Scholar 

  41. Li XZ, Jiang H, Liu YQ, Tang JW, Shi JS, Yu XJ, Wang X, Du L, Lu Q, Li CL, Liu YW, Yin XX (2021) Sarsasapogenin restores podocyte autophagy in diabetic nephropathy by targeting GSK3beta signaling pathway. Biochem Pharmaco 192:114675. https://doi.org/10.1016/j.bcp.2021.114675

  42. Sharma M, Chuang WW, Sun Z (2002) Phosphatidylinositol 3-kinase/Akt stimulates androgen pathway through GSK3beta inhibition and nuclear beta-catenin accumulation. J Biol Chem 277(34):30935–30941. https://doi.org/10.1074/jbc.M201919200

    Article  CAS  Google Scholar 

  43. Perugorria MJ, Olaizola P, Labiano I, Esparza-Baquer A, Marzioni M, Marin JJG, Bujanda L, Banales JM (2019) Wnt-beta-catenin signalling in liver development, health and disease. Nat Rev Gastro Hepat 16(2):121–136. https://doi.org/10.1038/s41575-018-0075-9

    Article  CAS  Google Scholar 

  44. Chen J, Liu W, Lee KF, Liu K, Wong BPC, Yeung Shu-Biu W (2021) Overexpression of Lin28a induces a primary ovarian insufficiency phenotype via facilitation of primordial follicle activation in mice. Mol Cell Endocrinol 539:111460. https://doi.org/10.1016/j.mce.2021.111460

    Article  CAS  Google Scholar 

  45. Cai CG, Yu QC, Jiang WM, Liu W, Song WQ, Zhang YuH, L, Yang Y, Zeng YA, (2014) R-spondin1 is a novel hormone mediator for mammary stem cell self-renewal. Gene Dev 28(20):2205–2218. https://doi.org/10.1101/gad.245142.114

    Article  CAS  Google Scholar 

  46. Bagchi DP, Nishii A, Li ZR, DelProposto JB, Corsa CA, Mori H, Bagchi DP, Nishii A, Li ZR, DelProposto JB, Corsa CA, Mori H, Hardij J, Learman BS, Lumeng CN, MacDougald OA (2020) Wnt/beta-catenin signaling regulates adipose tissue lipogenesis and adipocyte-specific loss is rigorously defended by neighboring stromal-vascular cells. Mol Metab 42:101078. https://doi.org/10.1016/j.molmet.2020.101078

  47. Wang J, Ling R, Zhou Y, Gao X, Yang Y, Mao C, Chen D (2020) SREBP1 silencing inhibits the proliferation and motility of human esophageal squamous carcinoma cells via the Wnt/beta-catenin signaling pathway. Oncol Lett 20(3):2855–2869. https://doi.org/10.3892/ol.2020.11853

    Article  CAS  Google Scholar 

  48. Tong JL, Wang LL, Ling XF, Wang MX, Ca W, Liu YY (2019) MiR-875 can regulate the proliferation and apoptosis of non-small cell lung cancer cells via targeting SOCS2. Eur Rev Med Pharmacol Sci 23(12):5235–5241. https://doi.org/10.26355/eurrev_201906_18189

    Article  Google Scholar 

  49. Gong R, Xi Y, Jin X, Xu H, Feng J, Hu Q, Xia Z (2021) Effects of the decrease of β-catenin expression on human vaginal fibroblasts of women with pelvic organ prolapse. J Obstet Gynaecol Res 47(11):4041–4022. https://doi.org/10.1111/jog.14946

    Article  CAS  Google Scholar 

  50. Ross SE, Hemati N, Longo KA, Bennett CN, Lucas PC, Erickson RL, MacDougald OA (2000) Inhibition of adipogenesis by Wnt signaling. Science 289(5481):950953. https://doi.org/10.1126/science.289.5481.950

    Article  Google Scholar 

  51. ShaoY ZFQ (2014) Emerging evidence of the physiological role of hypoxia in mammary development and lactation. J Anim Sci Biotechnol 5(1):9. https://doi.org/10.1186/2049-1891-5-9

    Article  CAS  Google Scholar 

  52. Badowska-Kozakiewicz AM, Sobol M, Patera J (2017) Expression of multidrug resistance protein P-glycoprotein in correlation with markers of hypoxia (HIF-1 alpha, EPO, EPO-R) in invasive breast cancer with metastasis to lymph nodes. Arch Med Sci 13(6):1303–1314. https://doi.org/10.5114/aoms.2016.62723

    Article  CAS  Google Scholar 

  53. Cokic VP, Bhattacharya B, Beleslin-Cokic BB, Noguchi CT, Puri RK, Schechter AN (2012) JAK-STAT and AKT pathway-coupled genes in erythroid progenitor cells through ontogeny. J Transl Med 10:116. https://doi.org/10.1186/1479-5876-10-116

    Article  CAS  Google Scholar 

  54. Choi K, Jin M, Zouboulis CC, Lee Y (2021) Increased lipid accumulation under hypoxia in SZ95 human sebocytes. Dermatology 237(1):131–141. https://doi.org/10.1159/000505537

    Article  CAS  Google Scholar 

  55. Lee HJ, Jung YH, Choi GE, Ko SH, Lee SJ, Lee SH, Han HJ (2017) BNIP3 induction by hypoxia stimulates FASN-dependent free fatty acid production enhancing therapeutic potential of umbilical cord blood-derived human mesenchymal stem cells. Redox Biol 13:426–443. https://doi.org/10.1016/j.redox.2017.07.004

    Article  CAS  Google Scholar 

  56. Penna F, Busquets S, Toledo M, Pin F, Massa D, Lopez-Soriano FJ, Costelli P, Argiles JM (2013) Erythropoietin administration partially prevents adipose tissue loss in experimental cancer cachexia models. J Lipid Res 54(11):3045–3051. https://doi.org/10.1194/jlr.M038406

    Article  CAS  Google Scholar 

  57. Qi C, Zhang J, Chen X, Wan J, Wang J, Zhang P, Liu Y (2017) Hypoxia stimulates neural stem cell proliferation by increasing HIF1alpha expression and activating Wnt/beta-catenin signaling. Cell Mol Biol (Noisy-le-grand) 63(7):12–19. https://doi.org/10.14715/cmb/2017.63.7.2

    Article  CAS  Google Scholar 

  58. Vallée A, Guillevin R, Vallée JN (2018) Vasculogenesis and angiogenesis initiation under normoxic conditions through Wnt/β-catenin pathway in gliomas. Rev Neurosci 29(1):71–91. https://doi.org/10.1515/revneuro-2017-0032

    Article  CAS  Google Scholar 

  59. Jiang YG, Luo Y, He DL, Li X, Zhang LL, Peng T, Li MC, Lin YH (2007) Role of Wnt/beta-catenin signaling pathway in epithelial-mesenchymal transition of human prostate cancer induced by hypoxia-inducible factor-1alpha. Int J Urol 14:1034–1039. https://doi.org/10.1111/j.1442-2042.2007.01866.x

    Article  CAS  Google Scholar 

  60. Zhang Q, Bai X, Chen W, Ma T, Hu Q, Liang C, Xie S, Chen C, Hu L, Xu S, Liang T (2013) Wnt/beta-catenin signaling enhances hypoxia-induced epithelial-mesenchymal transition in hepatocellular carcinoma via crosstalk with hif-1alpha signaling. Carcinogenesis 34:962–973. https://doi.org/10.1093/carcin/bgt027

    Article  CAS  Google Scholar 

  61. Vallee A, Levy BL, Blacher J (2018) Interplay between the renin-angiotensin system, the canonical WNT/beta-catenin pathway and PPARgamma in hypertension. Curr Hypertens Rep 20:62. https://doi.org/10.1007/s11906-018-0860-4

    Article  CAS  Google Scholar 

  62. Patten DA, Lafleur VN, Robitaille GA, Chan DA, Giaccia AJ, Richard DE (2010) Hypoxia-inducible factor-1 activation in nonhypoxic conditions: the essential role of mitochondrial-derived reactive oxygen species. Mol Biol Cell 21:3247–3257. https://doi.org/10.1091/mbc.E10-01-0025

    Article  CAS  Google Scholar 

  63. Kurlak LO, Williams PJ, Bulmer JN, Broughton Pipkin F, Mistry HD (2015) Placental expression of adenosine A(2A) receptor and hypoxia inducible factor-1 alpha in early pregnancy, term and pre-eclamptic pregnancies: interactions with placental renin-angiotensin system. Placenta 36:611–613. https://doi.org/10.1016/j.placenta.2015.02.011

    Article  CAS  Google Scholar 

  64. Seagroves TN, Hadsell D, McManaman J, Palmer C, Liao D, McNulty W, Welm B, Wagner KU, Neville M, Johnson RS (2003) HIF1 alpha a is a critical regulator of secretory differentiation and activation, but not vascular expansion, in the mouse mammary gland. Development 130:1713–1724. https://doi.org/10.1242/dev.00403

    Article  CAS  Google Scholar 

  65. Cassavaugh J, Lounsbury KM (2011) Hypoxia-mediated biological control. J Cell Biochem 112:735–744. https://doi.org/10.1002/jcb.22956

    Article  CAS  Google Scholar 

  66. Kelly BD, Hackett SF, Hirota K, Oshima Y, Cai Z, Berg-Dixon S, Rowan A, Yan Z, Campochiaro PA, Semenza GL (2003) Cell type-specific regulation of angiogenic growth factor gene expression and induction of angiogenesis in nonischemic tissue by a constitutively active form of hypoxia-inducible factor 1. Circ Res 93:1074–1081. https://doi.org/10.1161/01.RES.0000102937.50486.1B

    Article  CAS  Google Scholar 

  67. Rankin EB, Giaccia AJ (2008) The role of hypoxia-inducible factors in tumorigenesis. Cell Death Differ 15:678–685. https://doi.org/10.1038/cdd.2008.21

    Article  CAS  Google Scholar 

  68. Forsythe JA, Jiang BH, Iyer NV, Agani F, Leung SW, Koos RD, Semenza GL (1996) Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol Cell Biol 16:4604–4613. https://doi.org/10.1128/MCB.16.9.4604

    Article  CAS  Google Scholar 

  69. Cai J, Wang DM, Liu JX (2018) Regulation of fluid flow through the mammary gland of dairy cows and its effect on milk production: a systematic review. J Sci Food Agr 98:1261–1270. https://doi.org/10.1002/jsfa.8605

    Article  CAS  Google Scholar 

  70. Morimoto H, Yamamoto T, Miyazaki T, Ogonuki N, Ogura A, Tanaka T, Kanatsu-Shinohara M, Yabe-Nishimura C, Zhang H, Pommier Y, Trumpp A, Shinohara T (2021) An interplay of NOX1-derived ROS and oxygen determines the spermatogonial stem cell self-renewal efficiency under hypoxia. Genes Dev 35:250–260. https://doi.org/10.1101/gad.339903.120

    Article  CAS  Google Scholar 

  71. Agani FH, Pichiule P, Chavez JC, LaManna JC (2000) The role of mitochondria in the regulation of hypoxia-inducible factor 1 expression during hypoxia. J Biol Chem 275:35863–35867. https://doi.org/10.1074/jbc.M005643200

    Article  CAS  Google Scholar 

  72. Zhao RZ, Jiang S, Zhang L, Yu ZB (2019) Mitochondrial electron transport chain, ROS generation and uncoupling (Review). Int J Mol Med 44:3–15. https://doi.org/10.3892/ijmm.2019.4188

    Article  CAS  Google Scholar 

  73. Kannan N, Nguyen LV, Makarem M, Dong Y, Shih K, Eirew P, Raouf A, Emerman JT, Eaves CJ (2014) Glutathione-dependent and -independent oxidative stress-control mechanisms distinguish normal human mammary epithelial cell subsets. Proc Natl Acad Sci U S A 111:7789–7794. https://doi.org/10.1073/pnas.1403813111

    Article  CAS  Google Scholar 

  74. Sordillo LM, Pighetti GM, Davis MR (1995) Enhanced production of bovine tumor necrosis factor-alpha during the periparturient period. Vet Immunol Immunopathol 49:263–270. https://doi.org/10.1016/0165-2427(95)05465-0

    Article  CAS  Google Scholar 

  75. Liu XL, Shen JL, Zong JX, Liu JY, Jin YC (2021) Beta-sitosterol promotes milk protein and fat syntheses-related genes in bovine mammary epithelial cells. Animals (Basel) 11(11):3238. https://doi.org/10.3390/ani11113238

  76. Hadaya O, Bransi-Nicola R, Shalev Y, Azaizeh H, Roth Z, Muklada H, Deutch T, Landau SY, Argov-Argaman N (2020) Pistacia lentiscus extract enhances mammary epithelial cells' productivity by modulating their oxidative status. Sci Rep 10(1):20985. https://doi.org/10.1038/s41598-020-78065

  77. Chen W, Wei W, Yu L, Zhang X, Huang F, Zheng Q, Wang L, Cai C (2021) Baicalin promotes mammary gland development via steroid-like activities. Front Cell Dev Biol 9:682469. https://doi.org/10.3389/fcell.2021.682469

    Article  Google Scholar 

  78. Hadaya O, Landau SY, Glasser T, Muklada H, Deutch T, Shemesh M, Argov-Argaman N (2020) Producing pasture-like milk from goats in confinement. Livest Sci 236:104056. https://doi.org/10.1016/j.livsci.2020.10405

  79. Manuelian CL, Albanell E, Rovai M, Caja G (2016) How to create conditioned taste aversion for grazing ground covers in woody crops with small ruminants. J Vis Exp (110):53887. https://doi.org/10.3791/53887

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge Professor Hong-Gu Lee (Department of Animal Science and Technology, Sanghuh College of Life Sciences, Konkuk University, Seoul 05029, Korea) for generously providing MAC-T cells for cell culture assays.

Funding

This study was funded by the Jilin Provincial Department of Education (grant number JJKH20201022KJ) and the National Natural Science Foundation of China (grant number 31301996).

Author information

Authors and Affiliations

Authors

Contributions

Y. Jin, J. Shen and J. Zhang: conceptualization; J. Zong: methodology; J. Zong, X. Liu and J. Liu: validation; X. Liu, J. Liu and Y. Fan: investigation; J. Shen, J. Zhang and C. Zhou: resources; J. Zong: data curation; J. Zong: writing—original draft preparation; Y. Jin: writing—review and editing; J. Zong: visualization; Y. Jin and J. Shen: supervision; Y. Jin: project administration; Y. Jin: funding acquisition. All authors have read and agreed to the current version of the manuscript.

Corresponding author

Correspondence to Yongcheng Jin.

Ethics declarations

Disclaimer

The funders had no role in the design of the study; in data collection, analysis, or interpretation; in manuscript writing; or in publishing decision criteria.

Ethical Approval

This study did not involve any human or animal testing.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zong, J., Shen, J., Liu, X. et al. Lithium Chloride Promotes Milk Protein and Fat Synthesis in Bovine Mammary Epithelial Cells via HIF-1α and β-Catenin Signaling Pathways. Biol Trace Elem Res 201, 180–195 (2023). https://doi.org/10.1007/s12011-022-03131-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-022-03131-8

Keywords

Navigation