Skip to main content
Log in

Aberrant Gene Expression of Selenoproteins in Chicken Spleen Lymphocytes Induced by Mercuric Chloride

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Mercury (Hg) is a heavy metal widely distributed in ecological environment, poisoning the immune system of humans and animals. Selenium (Se) is an essential microelement and selenoproteins involved in the procedure of Se antagonizing organ toxicity induced by heavy metals. The aim of this research was to investigate the changes of gene expression profile of selenoproteins induced by mercuric chloride (HgCl2) in chicken spleen lymphocytes. We established cytotoxicity model of chicken spleen lymphocytes by HgCl2 exposure, the messenger RNA (mRNA) expression levels of 25 selenoproteins in spleen lymphocytes were analyzed by real-time quantitative PCR (qPCR), and the gene expression pattern of selenoproteins was revealed by principal component analysis (PCA). The results showed that the mRNA expression levels of 13 selenoproteins (GPX3, GPX4, TXNRD2, TXNRD3, DIO2, SELENOS, SELENON, SELENOT, SELENOO, SELENOP, SELENOP2, MSRB1, and SEPHS2) were decreased in HgCl2 treatment group, and there was strong positive correlation between these selenoproteins and component 1 as well as component 2 of the PCA. At the same time, the protein expression levels of GPX4, TXNRD1, TXNRD2, SELENOM, SELENOS, and SELENON were detected by Western blotting, which were consistent with the changes of gene expression. The results showed that the expression levels of selenoproteins were aberrant in response to HgCl2 toxicity. The information presented in this study provided clues for further research on the interaction between HgCl2 and selenoproteins, and the possible mechanism of immune organ toxicity induced by HgCl2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

Code Availability

Not applicable.

References

  1. Syversen T, Kaur P (2012) The toxicology of mercury and its compounds. J Trace Elem Med Biol 26:215–226. https://doi.org/10.1016/j.jtemb.2012.02.004

    Article  CAS  PubMed  Google Scholar 

  2. Gao D, Zeng LN, Zhang P, Ma ZJ, Li RS, Zhao YL, Zhang YM, Guo YM, Niu M, Bai ZF et al (2016) Rhubarb anthraquinones protect rats against mercuric chloride (HgCl2)-induced acute renal failure. Molecules 21:298. https://doi.org/10.3390/molecules21030298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hazelhoff MH, Torres AM (2018) Gender differences in mercury-induced hepatotoxicity: potential mechanisms. Chemosphere 202:330–338. https://doi.org/10.1016/j.chemosphere.2018.03.106

    Article  CAS  PubMed  Google Scholar 

  4. El-Desoky GE, Bashandy SA, Alhazza IM, Al-Othman ZA, Aboul-Soud MA, Yusuf K (2013) Improvement of mercuric chloride-induced testis injuries and sperm quality deteriorations by Spirulina platensis in rats. PLoS ONE 8:e59177. https://doi.org/10.1371/journal.pone.0059177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ibegbu AO, Micheal A, Abdulrazaq A, Daniel B, Musa SA (2014) Ameliorative effect of ascorbic acid on mercury chloride-induced changes on the spleen of adult Wistar rats. J Exp Clin Anat 13:60–65

    Article  Google Scholar 

  6. Kubicka-Muranyi M, Griem P, Lubben B, Rottmann N, Luhrmann R, Gleichmann E (1995) Mercuric-chloride-induced autoimmunity in mice involves up-regulated presentation by spleen cells of altered and unaltered nucleolar self antigen. Int Arch Allergy Immunol 108:1–10. https://doi.org/10.1159/000237110

    Article  CAS  PubMed  Google Scholar 

  7. Caglayan C, Kandemir FM, Yildirim S, Kucukler S, Eser G (2019) Rutin protects mercuric chloride-induced nephrotoxicity via targeting of aquaporin 1 level, oxidative stress, apoptosis and inflammation in rats. J Trace Elem Med Biol 54:69–78. https://doi.org/10.1016/j.jtemb.2019.04.007

    Article  CAS  PubMed  Google Scholar 

  8. Aragao WAB, Teixeira FB, Fagundes NCF, Fernandes RM, Fernandes LMP, da Silva MCF, Amado LL, Sagica FES, Oliveira EHC, Crespo-Lopez ME et al (2018) Hippocampal dysfunction provoked by mercury chloride exposure: evaluation of cognitive impairment, oxidative stress, tissue injury and nature of cell death. Oxid Med Cell Longev 2018:7878050. https://doi.org/10.1155/2018/7878050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Koli S, Prakash A, Choudhury S, Mandil R, Garg SK (2019) Calcium channels, Rho-kinase, protein kinase-C, and phospholipase-C pathways mediate mercury chloride-induced myometrial contractions in rats. Biol Trace Elem Res 187:418–424. https://doi.org/10.1007/s12011-018-1379-x

    Article  CAS  PubMed  Google Scholar 

  10. Wildemann TM, Siciliano SD, Weber LP (2016) The mechanisms associated with the development of hypertension after exposure to lead, mercury species or their mixtures differs with the metal and the mixture ratio. Toxicology 339:1–8. https://doi.org/10.1016/j.tox.2015.11.004

    Article  CAS  PubMed  Google Scholar 

  11. Ajsuvakova OP, Tinkov AA, Aschner M, Rocha JBT, Michalke B, Skalnaya MG, Skalny AV, Butnariu M, Dadar M, Sarac I et al (2020) Sulfhydryl groups as targets of mercury toxicity. Coord Chem Rev 417:213343. https://doi.org/10.1016/j.ccr.2020.213343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chen M, Li X, Fan R, Cao C, Yao H, Xu S (2017) Selenium antagonizes cadmium-induced apoptosis in chicken spleen but not involving Nrf2-regulated antioxidant response. Ecotoxicol Environ Saf 145:503–510. https://doi.org/10.1016/j.ecoenv.2017.08.001

    Article  CAS  PubMed  Google Scholar 

  13. Zhao D, Zhang X (2018) Selenium antagonizes the lead-induced apoptosis of chicken splenic lymphocytes in vitro by activating the PI3K/Akt pathway. Biol Trace Elem Res 182:119–129. https://doi.org/10.1007/s12011-017-1088-x

    Article  CAS  PubMed  Google Scholar 

  14. Wang N, Tan HY, Li S, Xu Y, Guo W, Feng Y (2017) Supplementation of micronutrient selenium in metabolic diseases: its role as an antioxidant. Oxid Med Cell Longev 2017:7478523. https://doi.org/10.1155/2017/7478523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jiao X, Yang K, An Y, Teng X, Teng X (2017) Alleviation of lead-induced oxidative stress and immune damage by selenium in chicken bursa of Fabricius. Environ Sci Pollut Res Int 24:7555–7564. https://doi.org/10.1007/s11356-016-8329-y

    Article  CAS  PubMed  Google Scholar 

  16. Yao HD, Wu Q, Zhang ZW, Li S, Wang XL, Lei XG, Xu SW (2013) Selenoprotein W serves as an antioxidant in chicken myoblasts. Biochim Biophys Acta 1830:3112–3120. https://doi.org/10.1016/j.bbagen.2013.01.007

    Article  CAS  PubMed  Google Scholar 

  17. Zheng S, Zhao J, Xing H, Xu S (2019) Oxidative stress, inflammation, and glycometabolism disorder-induced erythrocyte hemolysis in selenium-deficient exudative diathesis broilers. J Cell Physiol. https://doi.org/10.1002/jcp.28298,10.1002/jcp.28298

    Article  PubMed  PubMed Central  Google Scholar 

  18. Wrobel JK, Power R, Toborek M (2016) Biological activity of selenium: revisited. IUBMB Life 68:97–105. https://doi.org/10.1002/iub.1466

    Article  CAS  PubMed  Google Scholar 

  19. Sun Z, Xu Z, Wang D, Yao H, Li S (2018) Selenium deficiency inhibits differentiation and immune function and imbalances the Th1/Th2 of dendritic cells. Metallomics 10:759–767. https://doi.org/10.1039/c8mt00039e

    Article  CAS  PubMed  Google Scholar 

  20. Khoso PA, Zhang Y, Yin H, Teng X, Li S (2019) Selenium deficiency affects immune function by influencing selenoprotein and cytokine expression in chicken spleen. Biol Trace Elem Res 187:506–516. https://doi.org/10.1007/s12011-018-1396-9

    Article  CAS  PubMed  Google Scholar 

  21. Labunskyy VM, Hatfield DL, Gladyshev VN (2014) Selenoproteins: molecular pathways and physiological roles. Physiol Rev 94:739–777. https://doi.org/10.1152/physrev.00039.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Branco V, Canario J, Lu J, Holmgren A, Carvalho C (2012) Mercury and selenium interaction in vivo: effects on thioredoxin reductase and glutathione peroxidase. Free Radic Biol Med 52:781–793. https://doi.org/10.1016/j.freeradbiomed.2011.12.002

    Article  CAS  PubMed  Google Scholar 

  23. Li SW, Guo Y, He Y, Sun X, Zhao HJ, Wang Y, Wang YJ, Xing MW (2017) Assessment of arsenic trioxide toxicity on cock muscular tissue: alterations of oxidative damage parameters, inflammatory cytokines and heat shock proteins. Ecotoxicology 26:1078–1088. https://doi.org/10.1007/s10646-017-1835-y

    Article  CAS  PubMed  Google Scholar 

  24. Li M, You TZ, Zhu WJ, Qu JP, Liu C, Zhao B, Xu SW, Li S (2013) Antioxidant response and histopathological changes in brain tissue of pigeon exposed to avermectin. Ecotoxicology 22:1241–1254. https://doi.org/10.1007/s10646-013-1112-7

    Article  CAS  PubMed  Google Scholar 

  25. Martinez A, Santiago JL, Varade J, Marquez A, Lamas JR, Mendoza JL, de la Calle H, Diaz-Rubio M, de la Concha EG, Fernandez-Gutierrez B et al (2008) Polymorphisms in the selenoprotein S gene: lack of association with autoimmune inflammatory diseases. BMC Genomics 9:329. https://doi.org/10.1186/1471-2164-9-329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Verma S, Hoffmann FW, Kumar M, Huang Z, Roe K, Nguyen-Wu E, Hashimoto AS, Hoffmann PR (2011) Selenoprotein K knockout mice exhibit deficient calcium flux in immune cells and impaired immune responses. J Immunol 186:2127–2137. https://doi.org/10.4049/jimmunol.1002878

    Article  CAS  PubMed  Google Scholar 

  27. Yao H, Fan R, Zhao X, Zhao W, Liu W, Yang J, Sattar H, Zhao J, Zhang Z, Xu S (2016) Selenoprotein W redox-regulated Ca2+ channels correlate with selenium deficiency-induced muscles Ca2+ leak. Oncotarget 7:57618–57632. https://doi.org/10.18632/oncotarget.11459

    Article  PubMed  PubMed Central  Google Scholar 

  28. Fan RF, Liu JX, Yan YX, Wang L, Wang ZY (2020) Selenium relieves oxidative stress, inflammation, and apoptosis within spleen of chicken exposed to mercuric chloride. Poult Sci 99:5430–5439. https://doi.org/10.1016/j.psj.2020.08.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chu JH, Yan YX, Gao PC, Chen XW, Fan RF (2020) Response of selenoproteins gene expression profile to mercuric chloride exposure in chicken kidney. Res Vet Sci 133:4–11. https://doi.org/10.1016/j.rvsc.2020.08.020

    Article  CAS  PubMed  Google Scholar 

  30. Luan H, Wang Y, Li Y, Cui Z, Chang S, Zhao P (2016) Development of a real-time quantitative RT-PCR to detect REV contamination in live vaccine. Poult Sci 95:2023–2029. https://doi.org/10.3382/ps/pew147

    Article  CAS  PubMed  Google Scholar 

  31. Bjorklund G, Dadar M, Mutter J, Aaseth J (2017) The toxicology of mercury: current research and emerging trends. Environ Res 159:545–554. https://doi.org/10.1016/j.envres.2017.08.051

    Article  CAS  PubMed  Google Scholar 

  32. Ynalvez R, Gutierrez J, Gonzalez-Cantu H (2016) Mini-review: toxicity of mercury as a consequence of enzyme alteration. Biometals 29:781–788. https://doi.org/10.1007/s10534-016-9967-8

    Article  CAS  PubMed  Google Scholar 

  33. Branco V, Godinho-Santos A, Goncalves J, Lu J, Holmgren A, Carvalho C (2014) Mitochondrial thioredoxin reductase inhibition, selenium status, and Nrf-2 activation are determinant factors modulating the toxicity of mercury compounds. Free Radic Biol Med 73:95–105. https://doi.org/10.1016/j.freeradbiomed.2014.04.030

    Article  CAS  PubMed  Google Scholar 

  34. Kuras R, Reszka E, Wieczorek E, Jablonska E, Gromadzinska J, Malachowska B, Kozlowska L, Stanislawska M, Janasik B, Wasowicz W (2018) Biomarkers of selenium status and antioxidant effect in workers occupationally exposed to mercury. J Trace Elem Med Biol 49:43–50. https://doi.org/10.1016/j.jtemb.2018.04.032

    Article  CAS  PubMed  Google Scholar 

  35. Branco V, Carvalho C (2019) The thioredoxin system as a target for mercury compounds. Biochim Biophys Acta Gen Subj 1863:129255. https://doi.org/10.1016/j.bbagen.2018.11.007

    Article  CAS  PubMed  Google Scholar 

  36. Martinez CS, Pecanha FM, Brum DS, Santos FW, Franco JL, Zemolin APP, Anselmo-Franci JA, Junior FB, Alonso MJ, Salaices M et al (2017) Reproductive dysfunction after mercury exposure at low levels: evidence for a role of glutathione peroxidase (GPx) 1 and GPx4 in male rats. Reprod Fertil Dev 29:1803–1812. https://doi.org/10.1071/RD16310

    Article  CAS  PubMed  Google Scholar 

  37. Rahman MM, Hossain KFB, Banik S, Sikder MT, Akter M, Bondad SEC, Rahaman MS, Hosokawa T, Saito T, Kurasaki M (2019) Selenium and zinc protections against metal-(loids)-induced toxicity and disease manifestations: a review. Ecotoxicol Environ Saf 168:146–163. https://doi.org/10.1016/j.ecoenv.2018.10.054

    Article  CAS  PubMed  Google Scholar 

  38. Wang X, Bao R, Fu J (2018) The antagonistic effect of selenium on cadmium-induced damage and mRNA levels of selenoprotein genes and inflammatory factors in chicken kidney tissue. Biol Trace Elem Res 181:331–339. https://doi.org/10.1007/s12011-017-1041-z

    Article  CAS  PubMed  Google Scholar 

  39. Shimojo N, Kumagai Y, Nagafune J (2002) Difference between kidney and liver in decreased manganese superoxide dismutase activity caused by exposure of mice to mercuric chloride. Arch Toxicol 76:383–387. https://doi.org/10.1007/s00204-002-0364-4

    Article  CAS  PubMed  Google Scholar 

  40. Tinkov AA, Ajsuvakova OP, Skalnaya MG, Popova EV, Sinitskii AI, Nemereshina ON, Gatiatulina ER, Nikonorov AA, Skalny AV (2015) Mercury and metabolic syndrome: a review of experimental and clinical observations. Biometals 28:231–254. https://doi.org/10.1007/s10534-015-9823-2

    Article  CAS  PubMed  Google Scholar 

  41. Farina M, Aschner M (2019) Glutathione antioxidant system and methylmercury-induced neurotoxicity: an intriguing interplay. Biochim Biophys Acta Gen Subj 1863:129285. https://doi.org/10.1016/j.bbagen.2019.01.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhang YY, Zhu SZ, Wang XP, Wang CY, Li FC (2011) The effect of dietary selenium levels on growth performance, antioxidant capacity and glutathione peroxidase 1 (GSHPx1) mRNA expression in growing meat rabbits. Anim Feed Sci Technol 169:259–264. https://doi.org/10.1016/j.anifeedsci.2011.07.006

    Article  CAS  Google Scholar 

  43. Carvalho CM, Chew EH, Hashemy SI, Lu J, Holmgren A (2008) Inhibition of the human thioredoxin system: a molecular mechanism of mercury toxicity. J Biol Chem 283:11913–11923. https://doi.org/10.1074/jbc.M710133200

    Article  CAS  PubMed  Google Scholar 

  44. Bellinger FP, Raman AV, Reeves MA, Berry MJ (2009) Regulation and function of selenoproteins in human disease. Biochem J 422:11–22. https://doi.org/10.1042/BJ20090219

    Article  CAS  PubMed  Google Scholar 

  45. Wang Y, Zhang L, Chen L (2020) Glutathione peroxidase-activatable two-photon ratiometric fluorescent probe for redox mechanism research in aging and mercury exposure mice models. Anal Chem 92:1997–2004. https://doi.org/10.1021/acs.analchem.9b04381

    Article  CAS  PubMed  Google Scholar 

  46. Bjørklund G, Aaseth J, Ajsuvakova OP, Nikonorov AA, Skalny AV, Skalnaya MG, Tinkov AA (2017) Molecular interaction between mercury and selenium in neurotoxicity. Coord Chem Rev 332:30–37

    Article  Google Scholar 

  47. Petit N, Lescure A, Rederstorff M, Krol A, Moghadaszadeh B, Wewer UM, Guicheney P (2003) Selenoprotein N: an endoplasmic reticulum glycoprotein with an early developmental expression pattern. Hum Mol Genet 12:1045–1053. https://doi.org/10.1093/hmg/ddg115

    Article  CAS  PubMed  Google Scholar 

  48. Jurynec MJ, Xia R, Mackrill JJ, Gunther D, Crawford T, Flanigan KM, Abramson JJ, Howard MT, Grunwald DJ (2008) Selenoprotein N is required for ryanodine receptor calcium release channel activity in human and zebrafish muscle. Proc Natl Acad Sci U S A 105:12485–12490. https://doi.org/10.1073/pnas.0806015105

    Article  PubMed  PubMed Central  Google Scholar 

  49. You L, Liu C, Yang ZJ, Li M, Li S (2014) Prediction of selenoprotein T structure and its response to selenium deficiency in chicken immune organs. Biol Trace Elem Res 160:222–231. https://doi.org/10.1007/s12011-014-0049-x

    Article  CAS  PubMed  Google Scholar 

  50. Vaeth M, Yang J, Yamashita M, Zee I, Eckstein M, Knosp C, Kaufmann U, Karoly Jani P, Lacruz RS, Flockerzi V et al (2017) ORAI2 modulates store-operated calcium entry and T cell-mediated immunity. Nat Commun 8:14714. https://doi.org/10.1038/ncomms14714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Penta KL, Fairweather D, Shirley DL, Rose NR, Silbergeld EK, Nyland JF (2015) Low-dose mercury heightens early innate response to coxsackievirus infection in female mice. Inflamm Res 64:31–40. https://doi.org/10.1007/s00011-014-0781-x

    Article  CAS  PubMed  Google Scholar 

  52. Barrett CW, Reddy VK, Short SP, Motley AK, Lintel MK, Bradley AM, Freeman T, Vallance J, Ning W, Parang B et al (2015) Selenoprotein P influences colitis-induced tumorigenesis by mediating stemness and oxidative damage. J Clin Invest 125:2646–2660. https://doi.org/10.1172/JCI76099

    Article  PubMed  PubMed Central  Google Scholar 

  53. Lee BC, Lee SG, Choo MK, Kim JH, Lee HM, Kim S, Fomenko DE, Kim HY, Park JM, Gladyshev VN (2017) Selenoprotein MsrB1 promotes anti-inflammatory cytokine gene expression in macrophages and controls immune response in vivo. Sci Rep 7:5119. https://doi.org/10.1038/s41598-017-05230-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by grants from the National Natural Science Foundation of China (grant number 31902330) and China Postdoctoral Science Foundation (grant number 2020M672098).

Author information

Authors and Affiliations

Authors

Contributions

Rui-Feng Fan suggested the idea and made the study design. Jia-Hong Chu and Yu-Xue Yan carried out the experiment. Jia-Hong Chu wrote the manuscript with support of Rui-Feng Fan. Pei-Chao Gao, Xue-Wei Chen, and Lan-Xin Li who analyzed the results. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Rui-Feng Fan.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

Manuscript is approved by all authors for publication.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chu, JH., Yan, YX., Chen, XW. et al. Aberrant Gene Expression of Selenoproteins in Chicken Spleen Lymphocytes Induced by Mercuric Chloride. Biol Trace Elem Res 200, 2857–2865 (2022). https://doi.org/10.1007/s12011-021-02870-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-021-02870-4

Keywords

Navigation