Skip to main content

Advertisement

Log in

Antioxidant response and histopathological changes in brain tissue of pigeon exposed to avermectin

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

Avermectins (AVMs) are the active components of some insecticidal and nematicidal products used in agriculture and veterinary medicine for the prevention of parasitic diseases. Residues of AVM drugs or their metabolites in livestock feces have toxic effects on non-target aquatic and terrestrial organisms. In this study, oxidative stress responses and pathological changes on pigeon brain tissues and serum after subchronic exposure to AVM for 30, 60 and 90 days were investigated. The decrease in antioxidant enzyme (superoxide dismutase, SOD and glutathione peroxidase, GSH-Px) activities and increase in methane dicarboxylic aldehyde content in a dose–time-dependent manner in the brain and serum of pigeon were observed. The protein carbonyl content, an indicator of protein oxidation, and DNA–protein crosslink coefficient were significantly augmented with dose–time-dependent properties. The microscopic structures of the cerebrum, cerebellum and optic lobe altered obviously, the severity of which increased with the concentration of AVM and exposure time. The results imply that AVM could induce oxidative damage to the brain tissue and serum of pigeon. The information presented in this study is helpful to understand the mechanism of AVM-induced oxidative stress in birds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AVM:

Avermectin

AVMs:

Avermectins

SOD:

Superoxide dismutase

GSH-Px:

Glutathione peroxidase

MDA:

Methane dicarboxylic aldehyde

PCO:

Protein carbonyl

DPC:

DNA–protein crosslink

PBS:

Phosphate buffered saline

SDS:

Sodium dodecyl sulfate

DNPH:

2,4-Dinitrophenylhydrazine

HEPES:

2-Hydroxyethyl

PMSF:

Phenylmethanesulfonyl fluoride

EDTA:

Ethylenediamine tetraacetic acid

TCA:

Trichloroacetic acid

BSA:

Bovine serum albumin

ATR:

Atrazine

CPF:

Chlorpyrifos

LPO:

Lipid peroxidation

References

  • Abd Ellah M (2010) Involvement of free radicals in animal diseases. Comp Clin Pathol 19(6):615–619

    Article  Google Scholar 

  • Almeida M, Fanini F, Davino S, Aznar A, Koch O, Barros SBM (1997) Pro-and anti-oxidant parameters in rat liver after short term exposure to hexachlorobenzene. Hum Exp Toxicol 16(5):257–261

    Article  CAS  Google Scholar 

  • Barker S, Weinfeld M, Murray D (2005) DNA–protein crosslinks: their induction, repair, and biological consequences. Mutat. Res/Revs Mutat Res 589(2):111–135

    Article  CAS  Google Scholar 

  • Bekheet S, Saker S, Abdel-Kader A, Younis A (2010) Histopathological and biochemical changes of morphine sulphate administration on the cerebellum of albino rats. Tissue Cell 42(3):165–175

    Article  CAS  Google Scholar 

  • Bernet D, Schmidt H, Meier W, Burkhardt-Holm P, Wahli T (1999) Histopathology in fish: proposal for a protocol to assess aquatic pollution. J Fish Dis 22(1):25–34

    Article  Google Scholar 

  • Black AT, Gray JP, Shakarjian MP, Laskin DL, Heck DE, Laskin JD (2008) Increased oxidative stress and antioxidant expression in mouse keratinocytes following exposure to paraquat. Toxicol Appl Pharmacol 231(3):384–392

    Article  CAS  Google Scholar 

  • Costantini D (2008) Oxidative stress in ecology and evolution: lessons from avian studies. Ecol Lett 11(11):1238–1251

    Google Scholar 

  • Dong Q, Yang K, Wong S, O’Brien P (2010) Hepatocyte or serum albumin protein carbonylation by oxidized fructose metabolites: Glyceraldehyde or glycolaldehyde as endogenous toxins? Chem Biol Interact 188(1):31–37

    Article  CAS  Google Scholar 

  • Dringen R (2000) Metabolism and functions of glutathione in brain. Prog Neurobiol 62(6):649–671

    Article  CAS  Google Scholar 

  • El-Demerdash FM (2011) Lipid peroxidation, oxidative stress and acetylcholinesterase in rat brain exposed to organophosphate and pyrethroid insecticides. Food Chem Toxicol 49(6):1346–1352

    Article  CAS  Google Scholar 

  • El-Shenawy NS (2010) Effects of insecticides fenitrothion, endosulfan and abamectin on antioxidant parameters of isolated rat hepatocytes. Toxicol In Vitro 24(4):1148–1157

    Article  CAS  Google Scholar 

  • Finnie J (1984) Histopathological changes in the brain of mice given Clostridium perfringens type D epsilon toxin. J Comp Pathol 94(3):363–370

    Article  CAS  Google Scholar 

  • Fisher M, Mrozik H (1989) Chemistry. In: Campbell W (ed) Ivermectin and abamectin. Springer, New York, pp 1–23

    Chapter  Google Scholar 

  • Gunn A, Sadd J (1994) The effect of ivermectin on the survival, behaviour and cocoon production of the earthworm Eisenia fetida. Pedobiologia 38(4):327–333

    CAS  Google Scholar 

  • Halley BA, Jacob TA, Lu AYH (1989) The environmental impact of the use of ivermectin: environmental effects and fate. Chemosphere 18(7–8):1543–1563

    Article  CAS  Google Scholar 

  • Halley B, VandenHeuvel W, Wislocki PG (1993) Environmental effects of the usage of avermectins in livestock. Vet Parasitol 48(1–4):109–125

    Article  CAS  Google Scholar 

  • Hautekeete L, Khan S, Hales W (1998) Ivermectin toxicosis in a zebra. Vet Hum Toxicol 40(1):29–31

    CAS  Google Scholar 

  • Helen C, Ernest H (2004) Toxicity testing. In: Ernest H (ed) A textbook of modern toxicology, 3rd edn. Wiley, New York, pp 359–369

    Google Scholar 

  • Hussain S, Slikker W Jr, Ali S (1995) Age-related changes in antioxidant enzymes, superoxide dismutase, catalase, glutathione peroxidase and glutathione in different regions of mouse brain. Int J Dev Neurosci 13(8):811–817

    Article  CAS  Google Scholar 

  • Iliff-Sizemore S, Partlow M, Kelley S (1990) Ivermectin toxicology in a Rhesus macaque. Vet Hum Toxicol 32(6):530–532

    CAS  Google Scholar 

  • Jackson H (1989) Ivermectin as a systemic insecticide. Parasitology Today 5(5):146–156

    Article  CAS  Google Scholar 

  • Jencˇicˇ V, cˇerne M, Erzˇen NKu, Kobal S, Cerkvenik-Flajs V (2006) Abamectin effects on rainbow trout (Oncorhynchus mykiss). Ecotoxicology 15(3):249–257

    Article  Google Scholar 

  • Jensen J, Krogh PH, Sverdrup LE (2003) Effects of the antibacterial agents tiamulin, olaquindox and metronidazole on the antihelmintic ivermectin on the soil invertebrate species Folsomia fimetaria (Collembola)and Enchytraeus crypticus (Enchytraeidae). Chemosphere 50(3):437–443

    Article  Google Scholar 

  • Katharios P, Iliopoulou-Georgudaki J, Kapata-Zoumbos K, Spiropoulos S (2001) Toxicity of intraperitoneally injected ivermectin in sea bream, sparus aurata. Fish Physiology and Biochemistry 25(2):99–108

    Article  CAS  Google Scholar 

  • Khan SM (2005) Protective effect of black tea extract on the levels of lipid peroxidation and antioxidant enzymes in liver of mice with pesticide-induced liver injury. Cell Biochem Funct 24(4):327–332

    Article  Google Scholar 

  • Kolar L, Kozuh Erzen N, Hogerwerf L, Van Gestel C (2008) Toxicity of abamectin and doramectin to soil invertebrates. Environ Pollut 151(1):182–189

    Article  CAS  Google Scholar 

  • Kradong KV (1995) The nervous system. In: Kradong KV (ed) Vertebrates. William C Brown communciations, Dubuque, pp 617–662

    Google Scholar 

  • Lankas G, Gordon L (1989) Toxicology. In: Campbell W (ed) Ivermectin and abamectin. Springer-Verlag, New York, pp 89–112

    Chapter  Google Scholar 

  • Levine RL, Garland D, Oliver CN, Amici A, Climent I, Lenz AG, Ahn BW, Shaltiel S, Stadtman ER (1990) Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol 186:464–478

    Article  CAS  Google Scholar 

  • Li H, Han M, Hou L, Li G, Sang N (2010a) Landfill leachate ingestion induces protein oxidation and DNA–Protein crosslinks in mouse viscera. J Hazard Mater 174(1–3):54–58

    Article  CAS  Google Scholar 

  • Li JL, Gao R, Li S, Wang JT, Tang ZX, Xu SW (2010b) Testicular toxicity induced by dietary cadmium in cocks and ameliorative effect by selenium. Biometals 23(4):695–705

    Article  CAS  Google Scholar 

  • Limón-Pacheco J, Gonsebatt ME (2009) The role of antioxidants and antioxidant-related enzymes in protective responses to environmentally induced oxidative stress. Mutat Res/Genet Toxicol and Environ Mutagen 674(1–2):137–147

    Article  Google Scholar 

  • Lukaszewicz-Hussain A (2010) Role of oxidative stress in organophosphate insecticide toxicity-Short review. Pestic Biochem Physiol 98(2):145–150

    Article  CAS  Google Scholar 

  • Lushchak OV, Kubrak OI, Storey JM, Storey KB, Lushchak VI (2009) Low toxic herbicide Roundup induces mild oxidative stress in goldfish tissues. Chemosphere 76(7):932–937

    Article  CAS  Google Scholar 

  • Mate′s J, Pérez-Gómez C, De Castro I (1999) Antioxidant enzymes and human diseases. Clinic Biochemistry 32(8):595–603

    Article  Google Scholar 

  • Mate′s J, Segura J, Alonso F, Ma′rquez J (2012) Oxidative stress in apoptosis and cancer: an update. Arch Toxicol 86(11):1649–1665

    Article  Google Scholar 

  • Meng Z (2003) Oxidative damage of sulfur dioxide on various organs of mice: sulfur dioxide is a systemic oxidative damage agent. Inhalation Toxicol 15(2):181–195

    Article  CAS  Google Scholar 

  • Mladineo I, Marsic-Lucic J, Buzancic M (2006) Toxicity and gross pathology of ivermectin bath treatment in sea bream Sparus aurata. L. Ecotoxicol Environ Saf 63(3):438–442

    Article  CAS  Google Scholar 

  • Muhammad G, Abdul J, Khan M, Saqib M (2004) Use of neostigmine in massive ivermectin toxicity in cats. Vet Hum Toxicol 46(1):28–29

    Google Scholar 

  • Novelli A, Vieira B, Cordeiro D, Cappelini L, Vieira E, Espíndola E (2012) Lethal effects of abamectin on the aquatic organisms Daphnia similis. Chironomus Xanthus Danio rerio Chemosphere 86(1):36–40

    Article  CAS  Google Scholar 

  • Palmer R, Rodger H, Drinan E, Dwyer C, Smith P (1987a) Preliminary trials on the efficacy of ivermectin against parasitic copepods of Atlantic salmon. Bulletin European Association Fish Pathologists 7(2):47–54

    Google Scholar 

  • Palmer R, Rodger H, Drinan E, Dwyer C, Smith PR (1987b) Preliminary trials on the efficacy of ivermectin against parasitic copepods of Atlantic salmon. Bull Eur Ass Fish Pathol 7(2):47–54

    Google Scholar 

  • Pamplona R, Costantini D (2011) Molecular and structural antioxidant defenses against oxidative stress in animals. Am J Physiology-Regul Integra Compara Physiology 301(4):R843–R863

    Article  CAS  Google Scholar 

  • Parvez S, Raisuddin S (2005) Protein carbonyls: novel biomarkers of exposure to oxidative stress-inducing pesticides in freshwater fish Channa punctata (Bloch). Environ Toxicol Pharmacol 20(1):112–117

    Article  CAS  Google Scholar 

  • Rattner B (2009) History of wildlife toxicology. Ecotoxicology 18(7):773–783

    Article  CAS  Google Scholar 

  • Sang N, Hou L, Yun Y, Li G (2009) SO2 inhalation induces protein oxidation, DNA–Protein crosslinks and apoptosis in rat hippocampus. Ecotoxicol Environ Saf 72(3):879–884

    Article  CAS  Google Scholar 

  • Sharma H, Zhang P, Barber DS, Liu B (2010) Organochlorine pesticides dieldrin and lindane induce cooperative toxicity in dopaminergic neurons: role of oxidative stress. Neurotoxicology 31(2):215–222

    Article  CAS  Google Scholar 

  • Shen W, Zhao X, Wang Q, Niu B, Liu Y, He L, Weng H, Meng Z, Chen Y (2011) Genotoxicity evaluation of low doses of avermectin to hemocytes of silkworm (Bombyx mori) and response of gene expression to DNA damage. Pestic Biochem Physiol 101(3):159–164

    Article  CAS  Google Scholar 

  • Singh M, Sandhir R, Kiran R (2011) Effects on antioxidant status of liver following atrazine exposure and its attenuation by vitamin E. Exp Toxicol Pathol 63(3):269–276

    Article  CAS  Google Scholar 

  • Sommer C, Gronvold J, Holter P, Nansen P (1993) Effects of ivermectin on two afrotropical dung beetles, Onthophagus gazella and Diastellopalpus quinquedens (Coleoptera: Scarabaeidae). Vet Parasitol 48(1):171–179

    Article  CAS  Google Scholar 

  • Stadtman E (1986) Oxidation of proteins by mixed-function oxidation systems: implication in protein turnover, ageing and neutrophil function. Trends Biochem Sci 11(1):11–12

    Article  CAS  Google Scholar 

  • Sun Y, Diao X, Zhang Q, Shen J (2005) Bioaccumulation and elimination of avermectin B1a in the earthworms (Eisenia fetida). Chemosphere 60(5):699–704

    Article  CAS  Google Scholar 

  • Thain JE, Davies IM, Rae GH, Allen YT (1997) Acute toxicity of ivermectin to the lugworm Arenicola marina. Aquaculture 159(1–2):47–52

    Article  CAS  Google Scholar 

  • Tišler T, Kožuh Eržen N (2006) Abamectin in the aquatic environment. Ecotoxicology 15(6):495–502

    Article  Google Scholar 

  • Valko M, Rhodes C, Moncol J, Izakovic M, Mazur M (2006) Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact 160(1):1–40

    Article  CAS  Google Scholar 

  • Wall R, Strong L (1987) Environmental consequences of treating cattle with the antiparasitic drug ivermectin. Nature 327(6121):418–421

    Article  CAS  Google Scholar 

  • Wislocki P, Grosso L, Dybas R (1989a) Environmental aspects of abamectin use in crop protection. In: Campbell WC (ed) Ivermectin and abamectin. Springer-Verlag, New York, pp 182–200

    Chapter  Google Scholar 

  • Wislocki PG, Grosso LS, Dybas RA (1989b) Environmental aspects of abamectin use in crop protection. In: Campbell W (ed) Ivermectin and abamectin. Springer Verlag, New York, pp 182–200

    Chapter  Google Scholar 

  • Xing H, Li S, Wang Z, Gao X, Xu S, Wang X (2012a) Histopathological changes and antioxidant response in brain and kidney of common carp exposed to atrazine and chlorpyrifos. Chemosphere 88(4):377–383

    Article  CAS  Google Scholar 

  • Xing H, Li S, Wang Z, Gao X, Xu S, Wang X (2012b) Oxidative stress response and histopathological changes due to atrazine and chlorpyrifos exposure in common carp. Pestic Biochem Physiol 103(1):74–80

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful for financial support from the National Natural Science Foundation of China (Grant No. 30972226), Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20102325110014) and Foundation for University Key Teacher by the Heilongjiang Province (Grant No. 1155G11).

Ethical standards

All pigeon experiments were approved by the Institutional Animal Care and Use Committee of Northeast Agricultural University under the approved protocol number SRM-06.

Conflict of interest

The authors declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu Li.

Additional information

Ming Li and Tian-Zi You contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, M., You, TZ., Zhu, WJ. et al. Antioxidant response and histopathological changes in brain tissue of pigeon exposed to avermectin. Ecotoxicology 22, 1241–1254 (2013). https://doi.org/10.1007/s10646-013-1112-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-013-1112-7

Keywords

Navigation