Skip to main content

Advertisement

Log in

Zinc Prevents Ethanol-Induced Oxidative Damage in Lingual Tissues of Rats

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The current study was designed to investigate the effects of zinc sulfate on cell proliferation, metallothionein (MT) immunoreactivity and antioxidant system against acute ethanol-induced oxidative damage in tongue tissues of rats. Wistar albino male rats, 2.5 to 3.0 months, were divided into four groups: Group I (n = 8), intact control rats; group II (n = 8), control animals given only zinc sulfate (100 mg/kg/day, for 3 consecutive days); group III (n = 14), animals given 1 mL absolute ethanol; group IV (n = 11), animals given zinc sulfate and absolute ethanol at the same dose and time. Animals were sacrificed under anesthesia 2 h after ethanol administration or 4 h after the last zinc sulfate treatment. Ethanol administration caused a marked decrease in the number of MT immunopositive cells and the proliferating cells in the lingual epithelium. A statistically significant decline in reduced glutathione levels, catalase activity and superoxide dismutase activities was also observed, whereas a significant elevation of lipid peroxidation levels and lactate dehydrogenase activities was detected in the ethanol group. In contrast, these changes were reversed by administration of zinc sulfate to ethanol-treated rats. In conclusion, it shows that zinc sulfate has therapeutic effects on acute ethanol-induced oxidative damage in the tongue tissues of rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. WHO (2018) Global status report on alcohol and health, ISBN 978-92-4-156563-9 https://www.who.int/health-topics/alcohol#tab=tab_1. Accessed 07 February 2021

  2. Graciela KA, Juanita B, Silvia LA (2021) Alcohol toxicity: the role of oxidative stress, In: Patel BVB, Preedy VR (eds) Toxicology, Academic Press, pp 225-232 ISBN 9780128190920, https://doi.org/10.1016/B978-0-12-819092-0.00023-6

  3. Liang HW, Yang TY, Teng CS, Lee YJ, Yu MH, Lee HJ, Hsu LS, Wang CJ (2021) Mulberry leaves extract ameliorates alcohol-induced liver damages through reduction of acetaldehyde toxicity and inhibition of apoptosis caused by oxidative stress signals. Int J Med Sci 18(1):53–64. https://doi.org/10.7150/ijms.50174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hu EA, Lazo M, Rosenberg SD, Grams ME, Steffen LM, Coresh J, Rebholz CM (2020) Alcohol consumption and incident kidney disease: results from the atherosclerosis risk in communities study. J Ren Nutr 30(1):22–30. https://doi.org/10.1053/j.jrn.2019.01.011

    Article  CAS  PubMed  Google Scholar 

  5. Traphagen N, Tian Z, Allen-Gipson D (2015) Chronic ethanol exposure: pathogenesis of pulmonary disease and dysfunction. Biomolecules 5(4):2840–2853. https://doi.org/10.3390/biom5042840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Day E, Rudd JHF (2019) Alcohol use disorders and the heart. Addiction 114(9):1670–1678. https://doi.org/10.1111/add.14703

    Article  PubMed  PubMed Central  Google Scholar 

  7. Petrella C, Carito V, Carere C, Ferraguti G, Ciafrè S, Natella F, Bello C, Greco A, Ralli M, Mancinelli R, Messina MP, Fiore M, Ceccanti M (2020) Oxidative stress inhibition by resveratrol in alcohol-dependent mice. Nutrition 79-80:110783. https://doi.org/10.1016/j.nut.2020.110783

    Article  CAS  PubMed  Google Scholar 

  8. Marreiro DD, Cruz KJ, Morais JB, Beserra JB, Severo JS, de Oliveira AR (2017) Zinc and oxidative stress: current mechanisms. Antioxidants 6(2):24. https://doi.org/10.3390/antiox6020024

    Article  CAS  PubMed Central  Google Scholar 

  9. Kambe T, Tsuji T, Hashimoto A, Itsumura N (2015) The physiological, biochemical, and molecular roles of zinc transporters in zinc homeostasis and metabolism. Physiol Rev 95(3):749–784. https://doi.org/10.1152/physrev.00035.2014

    Article  CAS  PubMed  Google Scholar 

  10. Ozdil S, Yanardag R, Koyuturk M, Bolkent S, Arbak S (2004) Protective effects of ascorbic acid, DL-α-tocopherol acetate, and sodium selenate on ethanol-induced gastric mucosal injury of rats. Biol Trace Elem Res 99(1-3):173–189. https://doi.org/10.1385/BTER:99:1-3:173

    Article  CAS  PubMed  Google Scholar 

  11. Bolkent S, Arda-Pirincci P, Bolkent S, Yanardag R, Tunali S, Yildirim S (2006) Influence of zinc sulfate intake on acute ethanol-induced liver injury in rats. World J Gastroenterol 12(27):4345–4351. https://doi.org/10.3748/wjg.v12.i27.4345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kanter M, Coskun O, Uysal H (2006) The antioxidative and antihistaminic effect of Nigella sativa and its major constituent, thymoquinone on ethanol-induced gastric mucosal damage. Arch Toxicol 80:217–224. https://doi.org/10.1007/s00204-005-0037-1

    Article  CAS  PubMed  Google Scholar 

  13. Beutler E (1975) Glutathione in red cell metabolism: a manual of biochemical methods, 2 nd edn. Grune and Stratton, New York, pp 112–114

    Google Scholar 

  14. Ledwozyw A, Michalak J, Stepien A, Kadziolka A (1986) The relationship between plasma triglycerides, cholesterol, total lipids and lipid peroxidation products during human atherosclerosis. Clin Chim Acta 155(3):275–284. https://doi.org/10.1016/0009-8981(86)90247-0

    Article  CAS  PubMed  Google Scholar 

  15. Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126. https://doi.org/10.1016/S0076-6879(84)05016-3

    Article  CAS  Google Scholar 

  16. Mylroie AA, Collins H, Umbles C, Kyle J (1986) Erythrocyte superoxide dismutase activity and other parameters of copper status in rats ingesting lead acetate. Toxicol Appl Pharmacol 82(3):512–520. https://doi.org/10.1016/0041-008X(86)90286-3

    Article  CAS  PubMed  Google Scholar 

  17. Wroblewski (1957) Clinical significance of serum enzyme alterations associated with myocardial infarction. Am Heart J 54(2):219–224. https://doi.org/10.1016/0002-8703(57)90149-7

    Article  CAS  PubMed  Google Scholar 

  18. Lowry OH, Rosebrough NJ, Farr AR, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    Article  CAS  Google Scholar 

  19. Carrard VC, Pires AS, Mendez M, Mattos F, Moreira JCF, Sant’Ana Filho M (2009) Effects of acute alcohol consumption and vitamin E co-treatment on oxidative stress parameters in rats tongue. Food Chem Toxicol 47(6):1058–1063. https://doi.org/10.1016/j.fct.2009.01.033

    Article  CAS  PubMed  Google Scholar 

  20. Taylor B, Rehm J (2005) Moderate ethanol consumption and diseases of the gastrointestinal system: a review of pathophysiological processes. Dig Dis 23(3-4):177–180. https://doi.org/10.1159/000090164

    Article  PubMed  Google Scholar 

  21. Riveros-Rosas H, Julian-Sanchez A, Pina E (1997) Enzymology of ethanol and acetaldehyde metabolism in mammals. Arch Med Res 28(4):453–471

    CAS  PubMed  Google Scholar 

  22. Ogden GR, Wight AJ (1998) Aetiology of oral cancer: alcohol. Br J Oral Maxillofac Surg 36(4):247–251. https://doi.org/10.1016/S0266-4356(98)90707-0

    Article  CAS  PubMed  Google Scholar 

  23. Altayeb ZM, Salem MM (2017) The effect of ethanol on rat tongue and the possible protective role of royal jelly: light and scanning electron microscopic study. Egypt J Histol 40(3):265–276. https://doi.org/10.21608/EJH.2017.4654

    Article  Google Scholar 

  24. Howie NM, Trigkas TK, Cruchley AT, Wertz PW, Squier CA, Williams DM (2001) Short-term exposure to alcohol increases the permeability of human oral mucosa. Oral Dis 7(6):349–354. https://doi.org/10.1034/j.1601-0825.2001.00731.x

    Article  CAS  PubMed  Google Scholar 

  25. Squier CA, Kremer MJ, Wertz PW (2003) Effect of ethanol on lipid metabolism and epithelial permeability barrier of skin and oral mucosa in the rat. J Oral Pathol Med 32(10):595–599. https://doi.org/10.1034/j.1600-0714.2003.00198.x

    Article  CAS  PubMed  Google Scholar 

  26. Du X, Squier CA, Kremer MJ, Wertz PW (2000) Penetration of N-nitrosonornicotine (NNN) across oral mucosa in the presence of ethanol and nicotine. J Oral Pathol Med 29(2):80–85. https://doi.org/10.1034/j.1600-0714.2000.290205.x

    Article  CAS  PubMed  Google Scholar 

  27. Maito FLDM, Rados PV, Filho MS, Barbachan JJ, Quadros O (2003) Proliferating cell nuclear antigen expression on tongue of mice after intake of, or topical exposure to, alcohol. Alcohol 31:25–30. https://doi.org/10.1016/j.alcohol.2003.06.003

    Article  CAS  PubMed  Google Scholar 

  28. Carrard VC, Sant’Ana Filho M, Rados PV, Chaves ACM, da Silva LI (2004) Quantification of silver-staining nucleolar organizer region in epithelial cells of tongue of mice after exposure to, or intake of, alcohol. Alcohol 34(2-3):233–238. https://doi.org/10.1016/j.alcohol.2004.10.001

    Article  CAS  PubMed  Google Scholar 

  29. Hamilton AI, Blackwood HJ (1974) Cell renewal of oral mucosal epithelium of the rat. J Anat 117(2):313–327

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Dörr W, Kummermehr J (1991) Proliferation kinetics of mouse tongue epithelium under normal conditions and following single dose irradiation. Virchows Archiv B Cell Pathol Incl Mol Pathol 60(5):287–294. https://doi.org/10.1007/BF02899559

    Article  Google Scholar 

  31. Carrard VC, Pires AS, Mendez M, Pasquali MAB, Badauy CM, Lauxen IS, Moreira JCF, Filho MS (2013) Exploring the mechanisms of alcohol-related damage in oral mucosa - is oxidative stress associated with the increase in cell proliferation in rat tongue epithelium? Pharm Biol 51(2):160–169. https://doi.org/10.3109/13880209.2012.715171

    Article  CAS  PubMed  Google Scholar 

  32. Lansdown AB, Mirastschijski U, Stubbs N, Scanlon E, Ågren MS (2007) Zinc in wound healing: theoretical, experimental, and clinical aspects. Wound Repair Regen 15(1):2–16. https://doi.org/10.1111/j.1524-475X.2006.00179.x

    Article  PubMed  Google Scholar 

  33. Lansdown AB (2002) Metallothioneins: potential therapeutic aids for wound healing in the skin. Wound Repair Regen 10(3):130–132. https://doi.org/10.1046/j.1524-475x.2002.20101.x

    Article  PubMed  Google Scholar 

  34. Arda-Pirincci P, Bolkent S, Yanardag R (2006) The role of zinc sulfate and metallothionein in protection against ethanol-induced gastric damage in rats. Dig Dis Sci 51(12):2353–2360. https://doi.org/10.1007/s10620-006-9301-3

    Article  CAS  PubMed  Google Scholar 

  35. Choi EY, Hwang HJ, Kim IH, Nam TJ (2009) Protective effects of polysaccharide from Hizika fusiformis against ethanol toxicity in rats. Food Chem Toxicol 47(1):134–139. https://doi.org/10.1016/j.fct.2008.10.026

    Article  CAS  PubMed  Google Scholar 

  36. Fridovich I (1986) Biological effects of superoxide radical. Arch Biochem Biophys 247(1):1–11. https://doi.org/10.1016/0003-9861(86)90526-6

    Article  CAS  PubMed  Google Scholar 

  37. Zima T, Fialová L, Metsek O, Janebová M, Crkovská J, Malbohan I, Stípek S, Mikulíková L, Popov P (2001) Oxidative stress, metabolism of ethanol and alcohol-related diseases. J Biomed Sci 8(1):59–70. https://doi.org/10.1007/BF02255972

    Article  CAS  PubMed  Google Scholar 

  38. Fosmire GJ (1990) Zinc toxicity. Am J Clin Nutr 51(2):225–227. https://doi.org/10.1093/ajcn/51.2.225

    Article  CAS  PubMed  Google Scholar 

  39. Joseph RM, Varela V, Kanji VK, Subramony C, Mihas AA (1999) Protective effects of zinc in indomethacin-induced gastric mucosal injury: evidence for a dual mechanism involving lipid peroxidation and nitric oxide. Aliment Pharmacol Ther 13:203–208. https://doi.org/10.1046/j.1365-2036.1999.00456.x

    Article  CAS  PubMed  Google Scholar 

  40. Kostecka-Sochoń P, Onopiuk BM, Dąbrowska E (2018) Protective effect of increased zinc supply against oxidative damage of sublingual gland in chronic exposure to cadmium: experimental study on rats. Oxid Med Cell Longev 2018:3732842–3732848. https://doi.org/10.1155/2018/3732842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Żukowski P, Maciejczyk M, Waszkiel D (2018) Sources of free radicals and oxidative stress in the oral cavity. Arch Oral Biol 92:8–17. https://doi.org/10.1016/j.archoralbio.2018.04.018

    Article  CAS  PubMed  Google Scholar 

  42. Trivedi S, Nand L, Abbas Ali M, Babita S, Shivani P (2015) Association of salivary lipid peroxidation levels, antioxidant enzymes, and chronic periodontitis. Int J Periodontics Restorative Dent 35(2):e14–e19. https://doi.org/10.11607/prd.2079

    Article  PubMed  Google Scholar 

  43. Novakovic N, Todorovic T, Rakic M, Milinkovic I, Dozic I, Jankovic S, Aleksic Z, Cakic S (2014) Salivary antioxidants as periodontal biomarkers in evaluation of tissue status and treatment outcome. J Periodont Res 49(1):129–136. https://doi.org/10.1111/jre.12088

    Article  CAS  Google Scholar 

  44. Yarat A, Sacan O, Akyuz S, Alev B, Pisiriciler R, Ak E, Yanardag R (2013) In vitro effect of aqueous plant extracts on antioxidant parameters in saliva samples. J Med Plants Res 7(3):118–125. https://doi.org/10.5897/JMPR.9000760

    Article  Google Scholar 

  45. Bagchi D, Bagchi M, Hassoun EA, Stohs SJ (1995) In vitro and in vivo generation of reactive oxygen species, DNA damage and lactate dehydrogenase leakage by selective pesticides. Toxicology 104(1-3):3129–3140. https://doi.org/10.1016/0300-483x(95)03156-a

    Article  Google Scholar 

  46. Magarian GC, Lucas LM, Kumar KL (1992) Clinical significance in alcoholic patients of commonly encountered laboratory test results. West J Med 156(3):287–294

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Arda-Pirincci P, Bilgin-Sokmen B, Yanardag R, Bolkent S (2009) Effects of zinc on intestinal injury and some serum parameters in ethanol-administered rats. Biosci Biotechnol Biochem 73(2):260–267. https://doi.org/10.1271/bbb.70805

    Article  CAS  PubMed  Google Scholar 

  48. Turkyilmaz IB, Bayrak BB, Sacan O, Mutlu O, Akev N, Yanardag R (2020) Zinc supplementation restores altered biochemical parameters in stomach tissue of STZ diabetic rats. Biol Trace Elem Res. https://doi.org/10.1007/s12011-020-02352-z

  49. Ozdil S, Bolkent S, Yanardag R, Arda-Pirincci P (2004) Protective effects of ascorbic acid, DL-α-tocopherol acetate, and sodium selenate on ethanol-induced liver damage of rats. Biol Trace Elem Res 97(2):149–161. https://doi.org/10.1385/BTER:97:2:149

    Article  CAS  PubMed  Google Scholar 

  50. Yang J, Lamm EW, Hammad HM, Oberley TD, Oberley LW (2002) Antioxidant enzyme levels in oral squamous cell carcinoma and normal human epithelium. J Oral Pathol Med 31(2):71–77. https://doi.org/10.1034/j.1600-0714.2002.310202.x

    Article  CAS  PubMed  Google Scholar 

  51. Campos SC, Moreira DAC, Nunes TD, Colepicolo P, Brigagao MR (2005) Oxidative stress in alcohol-induced rat parotid sialadenosis. Arch Oral Biol 50(7):661–668. https://doi.org/10.1016/j.archoralbio.2004.11.013

    Article  CAS  PubMed  Google Scholar 

  52. Guzmán-Gómez O, García-Rodríguez RV, Quevedo-Corona L, Pérez-Pastén-Borja R, Rivero-Ramírez NL, Ríos-Castro E, Pérez-Gutiérrez S, Pérez-Ramos J, Chamorro-Cevallos GA (2018) Amelioration of ethanol-induced gastric ulcers in rats pretreated with phycobiliproteins of Arthrospira (Spirulina) Maxima. Nutrients 10(6):763. https://doi.org/10.3390/nu10060763

    Article  CAS  PubMed Central  Google Scholar 

  53. Sacan O, Turkyilmaz IB, Bayrak BB, Mutlu O, Akev N, Yanardag R (2021) Protective role of zinc in liver damage in experimental diabetes demonstrated via different biochemical parameters. J Biochem Mol Toxicol 35:e22617. https://doi.org/10.1002/jbt.22617

    Article  CAS  PubMed  Google Scholar 

  54. Khan AA, Allemailem KS, Alhumaydhi FA, Gowder SJT, Rahmani AH (2020) The biochemical and clinical perspectives of lactate dehydrogenase: an enzyme of active metabolism. Endocr Metab Immune Disord Drug Targets 20(6):855–868. https://doi.org/10.2174/1871530320666191230141110

    Article  CAS  PubMed  Google Scholar 

  55. Alimi H, Hfaiedh N, Bouoni Z, Hfaiedh M, Sakly M, Zourgui L, Rhouma KB (2010) Antioxidant and antiulcerogenic activities of Opuntia ficus indica f. inermis root extract in rats. Phytomedicine 17(14):1120–1126. https://doi.org/10.1016/j.phymed.2010.05.001

    Article  PubMed  Google Scholar 

  56. Das D, Bandyopadhyay D, Bhattacharya M, Banarjee RK (1997) Hydroxyl radical is the major causative factor in stress-induced gastric ulceration. Free Radic Biol Med 23(1):8–18. https://doi.org/10.1016/s0891-5849(96)00547-3

    Article  CAS  PubMed  Google Scholar 

  57. Saravanan R, Pugalendi V (2006) Impact of ursolic acid on chronic ethanol-induced oxidative stress in the rat heart. Pharmacol Rep 58:41–47

    CAS  PubMed  Google Scholar 

  58. Saravanan N, Nalini N (2007) Antioxidant effect of Hemidesmus indicus on ethanol-induced hepatotoxicity in rats. J Med Food 10(4):675–682. https://doi.org/10.1089/jmf.2006.110

    Article  CAS  PubMed  Google Scholar 

  59. Yanardag R, Ozsoy-Sacan O, Ozdil S, Bolkent S (2007) Combined effects of vitamin C, vitamin E, and sodium selenate supplementation on absolute ethanol-induced injury in various organs of rats. Int J Toxicol 26(6):513–523. https://doi.org/10.1080/10915810701707296

    Article  CAS  PubMed  Google Scholar 

  60. Dogan C, Celik I (2011) Hepatoprotective and antioxidant activities of grapeseeds against ethanol-induced oxidative stress in rats. Br J Nutr 107(1):45–51. https://doi.org/10.1017/S0007114511002650

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All data were generated in-house and that no paper mill was used. RY, SB and PAP conceived and designed the study. PAP and BBB performed experiments. RY, SB, PAP and BBB analyzed data. RY, SB, PAP and BBB wrote the manuscript. RY, SB, PAP and BBB read and approved the final manuscript.

Corresponding author

Correspondence to Bertan Boran Bayrak.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bayrak, B.B., Arda-Pirincci, P., Bolkent, S. et al. Zinc Prevents Ethanol-Induced Oxidative Damage in Lingual Tissues of Rats. Biol Trace Elem Res 200, 720–727 (2022). https://doi.org/10.1007/s12011-021-02682-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-021-02682-6

Keywords

Navigation