Skip to main content
Log in

Low-Se Diet Can Affect Sperm Quality and Testicular Glutathione Peroxidase-4 activity in Rats

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

This study aimed to observe the influence of selenium (Se) deficiency on sperm quality and selenoprotein expression in rats. Four-week male Wista rats were randomly divided into three groups: Se-A, Se-L, and Se-D (respectively for Se- adequate, low, and deficient group). After 9 weeks, the rats were sacrificed by anesthesia, with the cauda epididymidis quickly fetched for sperm count, motility, and deformity. Meanwhile the blood, liver, brain, heart, and testis were collected for Se and biochemical analysis. It was found that the rats in Se-D had poor growth, while the Se concentrations in blood, liver, and heart for Se-D decreased significantly, compared with Se-A and Se-L (p < 0.01). But no significant difference was observed in testis and brain and also no statistical significance for sperm count. The sperm motility for Se-A (63.07%) was significantly higher than Se-L (53.91%) and Se-D (54.15%). Deformities were observed in both Se-L and Se-D. Both glutathione peroxidases (GPxs) and selenoprotein-P (SEPP1) levels in plasma and tissues of Se-D were significantly lower than those of Se-A and Se-L (p < 0.01). The SEPP1 levels in heart and brain of Se-L were lower than Se-A (p < 0.01). There was no statistical difference for GPx1 between Se-A and Se-L. The GPx4 level in testis of Se-L was lower than Se-A (p < 0.05). However, the SEPP1 in plasma, liver, testis, and the GPx3 level in plasma of Se-L were higher than those of Se-A (p < 0.05 or p < 0.01). Our results show that dietary Se deficiency could reduce GPx4 and SEPP1 expression in testis, which further influence sperm motility and may cause sperm deformity. Selenoprotein expression in some tissues of Se-L was higher than that of Se-A, but sperm quality and GPx4 expression in testis were not improved for Se-L. Low active pseudoselenoproteins might be synthesized in low-Se condition. The underlying mechanism needs to be further investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Duntas LH, Benvenga S (2015) Selenium: an element for life. Endocrine 48(3):756–775. https://doi.org/10.1007/s12020-014-0477-6

    Article  CAS  PubMed  Google Scholar 

  2. Djalalinia S, Khosravi M, Hasani M et al (2019) Effects of selenium supplementation on cardiometabolic risk factors, inflammatory, and antioxidant markers: a systematic review and meta-analysis protocol. Int J Prev Med 10:213. https://doi.org/10.4103/ijpvm.IJPVM_509_17

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kuršvietienė L, Mongirdienė A, Bernatonienė J, Šulinskienė J, Stanevičienė I (2020) Selenium anticancer properties and impact on cellular redox status. Antioxidants (Basel) 9(1):80. https://doi.org/10.3390/antiox9010080

    Article  CAS  Google Scholar 

  4. Mistry HD, Broughton Pipkin F, Redman CW, Poston L (2012) Selenium in reproductive health. Am J Obstet Gynecol 206(1):21–30. https://doi.org/10.1016/j.ajog.2011.07.034

    Article  CAS  PubMed  Google Scholar 

  5. Maiorino M, Roveri A, Ursini F, Brigelius-Flohé R, Flohé L (2006) Selenium and male reproduction. In: Hatfield DL, Berry MJ, Gladyshev VN (eds) Selenium: Its Molecular Biology and Role in Human Health, 2nd edn. Springer Science+Business Media, LLC, pp 323–332 Chap 25

  6. Ahsan U, Kamran Z, Raza I, Ahmad S, Babar W, Riaz M, Iqbal Z (2014) Role of selenium in male reproduction-a review. Anim Reprod Sci 146:55–62. https://doi.org/10.1016/j.anireprosci.2014.01.009

    Article  CAS  PubMed  Google Scholar 

  7. Qazi IH, Angel C, Yang H, Pan B, Zoidis E, Zeng CJ, Han H, Zhou GB (2018) Selenium, selenoproteins, and female reproduction: a review. Molecules 23(12):3053. https://doi.org/10.3390/molecules23123053

    Article  CAS  PubMed Central  Google Scholar 

  8. Imai H, Nakagawa Y (2003) Biological significance of phospholipid hydroperoxide glutathione peroxidase (PHGPx, GPx4) in mammalian cells. Free Radic Biol Med 34(2):145–169. https://doi.org/10.1016/s0891-5849(02)01197-8

    Article  CAS  PubMed  Google Scholar 

  9. Foresta C, FlohéL GA, Roveri A, Ursini F, Maiorino M (2002) Male fertility is linked to the selenoprotein phospholipid hydroperoxide glutathione peroxidase. Biol Reprod 67(3):967–971. https://doi.org/10.1095/biolreprod.102.003822

    Article  CAS  PubMed  Google Scholar 

  10. Brigelius-Flohé R, Flohé L (2020) Regulatory phenomena in the glutathione peroxidase superfamily. Antioxid Redox Signal 33(7):498–516. https://doi.org/10.1089/ars.2019.7905

    Article  CAS  PubMed  Google Scholar 

  11. Olson GE, Winfrey VP, NagDas SK, Hill KE, Burk RF (2007) Apolipoprotein E receptor-2 (ApoER2) mediates selenium uptake from selenoprotein P by the mouse testis. J Biol Chem 282(16):12290–12297. https://doi.org/10.1074/jbc.M611403200

    Article  CAS  PubMed  Google Scholar 

  12. Kehr S, Malinouski M, Finney L, Vogt S, Labunskyy VM, Kasaikina MV, Carlson BA, Zhou Y, Hatfield DL, Gladyshev VN (2009) X-ray fluorescence microscopy reveals the role of selenium in spermatogenesis. J Mol Biol 389(5):808–818. https://doi.org/10.1016/j.jmb.2009.04.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang Y (2003) Epididymal sperm count. Curr Protoc Toxicol, Chapter 16: Unit16.6. https://doi.org/10.1002/0471140856.tx1606s14

  14. Seed J, Chapin RE, Clegg ED et al (1996) Methods for assessing sperm motility, morphology, and counts in the rat, rabbit, and dog: a consensus report. ILSI Risk Sci ence Institute Expert Working Group on Sperm Evaluation. Reprod Toxicol 10:237–244. https://doi.org/10.1016/0890-6238(96)00028-7

    Article  CAS  PubMed  Google Scholar 

  15. Wang Q, Sun LC, Liu YQ, Lu JX, Han F, Huang ZW (2016) The synergistic effect of serine with selenocompounds on the expression of SEPP1 and GPx in HepG2 cells. Biol Trace Elem Res 173(2):291–296. https://doi.org/10.1007/s12011-016-0665-8

    Article  CAS  PubMed  Google Scholar 

  16. Hybsier S, Schulz T, Wu Z, Demuth I, Minich WB, Renko K, Rijntjes E, Kohrle J, Strasburger CJ, Steinhagen-Thiessen E, Schomburg L (2017) Sex-specific and inter-individual differences in biomarkers of selenium status identified by a calibrated elisa for selenoprotein p. Redox Biol:403–414. https://doi.org/10.1016/j.redox.2016.12.025

  17. Boitani C, Puglisi R (2008) Selenium, a Key Element in Spermatogenesis and Male Fertility. Adv Exp Med Biol 636:65–73. https://doi.org/10.1007/978-0-387-09597-4_4

    Article  CAS  PubMed  Google Scholar 

  18. Qazi IH, Angel C, Yang H, Zoidis E, Pan B, Wu Z, Ming Z, Zeng C-J, Meng Q, Han H, Zhou G (2019) Role of selenium and selenoproteins in male reproductive function: a review of past and present evidences. Antioxidants (Basel) 8(8):268. https://doi.org/10.3390/antiox8080268

    Article  CAS  Google Scholar 

  19. Shalini S, Bansal MP (2008) Dietary selenium deficiency as well as excess supplementation induces multiple defects in mouse epididymal spermatozoa: understanding the role of selenium in male fertility. Int J Androl 31(4):438–449. https://doi.org/10.1111/j.1365-2605.2007.00789.x

    Article  CAS  PubMed  Google Scholar 

  20. Mintziori G, Mousiolis A, Duntas LH, Goulis DG (2020) Evidence for a manifold role of selenium in infertility. Hormones (Athens) 19(1):55–59. https://doi.org/10.1007/s42000-019-00140-6

    Article  Google Scholar 

  21. Kaur P, Bansal MP (2005) Effect of selenium-induced oxidative stress on the cell kinetics in testis and reproductive ability of male mice. Nutrition 21(3):351–357. https://doi.org/10.1016/j.nut.2004.05.028

    Article  CAS  PubMed  Google Scholar 

  22. Li M, Zhang Y, Li S (2020) Effects of selenium deficiency on testis development and autophagy in chicks. Ital J Anim Sci:753–761. https://doi.org/10.1080/1828051X.2020.1786739

  23. Hill KE, Zhou J, Austin LM, Motley AK, Ham AJ, Olson GE, Atkins JF, Gesteland RF, Burk RF (2007) The selenium-rich C-terminal domain of mouse selenoprotein P is necessary for the supply of selenium to brain and testis but not for the maintenance of whole body selenium. J Biol Chem 282(15):10972–10980. https://doi.org/10.1074/jbc.M700436200

    Article  CAS  PubMed  Google Scholar 

  24. Sánchez-Gutiérrez M, García-Montalvo E, Izquierdo-Vega J, Del Razo L (2008) Effect of dietary selenium deficiency on the in vitro fertilizing ability of mice spermatozoa. Cell Biol Toxicol 24(4):321–329. https://doi.org/10.1007/s10565-007-9044-8

    Article  CAS  PubMed  Google Scholar 

  25. Schneider M, Förster H, Boersma A, Seiler A, Wehnes H, Sinowatz F, Neumüller C, Deutsch MJ, Walch A, Hrabé de Angelis M, Wurst W, Ursini F, Roveri A, Maleszewski M, Maiorino M, Conrad M (2009) Mitochondrial glutathione peroxidase 4 disruption causes male infertility. FASEB J 23(9):3233–3242. https://doi.org/10.1096/fj.09-132795

    Article  CAS  PubMed  Google Scholar 

  26. Ingold I, Aichler M, Yefremova E, Roveri A, Buday K, Doll S, Tasdemir A, Hoffard N, Wurst W, Walch A, Ursini F, Friedmann Angeli JP, Conrad M (2015) Expression of a catalytically inactive mutant form of glutathione peroxidase 4 (gpx4) confers a dominant-negative effect in male fertility. J Biol Chem 290(23):14668–14678. https://doi.org/10.1074/jbc.M115.656363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhou JC, Zheng S, Mo J, Liang X, Xu Y, Zhang H, Gong C, Liu XL, Lei XG (2017) Dietary selenium deficiency or excess reduces sperm quality and testicular mRNA abundance of nuclear glutathione peroxidase 4 in rats. J Nutr 147(10):1947–1953. https://doi.org/10.3945/jn.117.252544

    Article  CAS  PubMed  Google Scholar 

  28. Lu Z, Wang P, Teng T, Shi B, Shan A, Lei XG (2019) Effects of dietary selenium deficiency or excess on selenoprotein gene expression in the spleen tissue of pigs. Animals (Basel) 912(12):1122. https://doi.org/10.3390/ani9121122

    Article  Google Scholar 

  29. Du Q, Yao H, Yao L, Zhang Z, Lei X, Xu S (2016) Selenium deficiency influences the expression of selenoproteins and inflammatory cytokines in chicken aorta vessels. Biol Trace Elem Res 173(2):501–513. https://doi.org/10.1007/s12011-016-0676-5

    Article  CAS  PubMed  Google Scholar 

  30. Michaelis M, Gralla O, Behrends T, Scharpf M, Endermann T, Rijntjes E, Pietschmann N, Hollenbach B, Schomburg L (2014) Selenoprotein P in seminal fluid is a novel biomarker of sperm quality. Biochem Biophys Res Commun 443(3):905–910. https://doi.org/10.1016/j.bbrc.2013.12.067

    Article  CAS  PubMed  Google Scholar 

  31. Burk RF, Hill KE (2009) Selenoprotein P-expression, functions, and roles in mammals. Biochim Biophys Acta 1790(11):1441–1447. https://doi.org/10.1016/j.bbagen.2009.03.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Koga M, Tanaka H, Yomogida K, Tsuchida J, Uchida K, Kitamura M, Sakoda S, Matsumiya K, Okuyama A, Nishimune Y (1998) Expression of selenoprotein-P messenger ribonucleic acid in the rat testis. Biol Reprod 58(1):261–265. https://doi.org/10.1095/biolreprod58.1.261

    Article  CAS  PubMed  Google Scholar 

  33. Xu XM, Turanov AA, Carlson BA, Yoo MH, Everley RA, Nandakumar R, Sorokina I, Gygi SP, Gladyshev VN, Hatfield DL (2010) Targeted insertion of cysteine by decoding UGA codons with mammalian selenocysteine machinery. Proc Natl Acad Sci 107(50):21430–21434. https://doi.org/10.1073/pnas.1009947107

    Article  PubMed  PubMed Central  Google Scholar 

  34. Turanov AA, Everley RA, Hybsier S, Renko K, Schomburg L, Gygi SP, Hatfield DL, Gladyshev VN (2015) Regulation of selenocysteine content of human selenoprotein p by dietary selenium and insertion of cysteine in place of selenocysteine. PLoS One 10(10):e0140353. https://doi.org/10.1371/journal.pone.0140353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mannes AM, Seiler A, Bosello V, Maiorino M, Conrad M (2011) Cysteine mutant of mammalian gpx4 rescues cell death induced by disruption of the wild-type selenoenzyme. FASEB J 25(7):2135–2144. https://doi.org/10.1096/fj.10-177147

    Article  CAS  PubMed  Google Scholar 

  36. Vindry C, Ohlmann T, Chavatte L (2018) Translation regulation of mammalian selenoproteins. Biochim Biophys Acta Gen Subj. https://doi.org/10.1016/j.bbagen.2018.05.010

Download references

Acknowledgment

This work was supported by the youth science fund of National Institute of Nutrition and Health, Chinese Centre for Disease Control and Prevention (Grant No. NINH2018001).

The authors’ responsibilities were as follows

QW and SZ completed the experiments and wrote the paper; YQL and FH contributed to the detection of Se; LLS and CH participated in the animal experimental; WPM and JZC provided valuable advice on the writing; ZWH designed the experiments and revised the paper critically for important content; and all authors read and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen-wu Huang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Zhan, S., Liu, Y. et al. Low-Se Diet Can Affect Sperm Quality and Testicular Glutathione Peroxidase-4 activity in Rats. Biol Trace Elem Res 199, 3752–3758 (2021). https://doi.org/10.1007/s12011-020-02515-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-020-02515-y

Keywords

Navigation