Skip to main content
Log in

Selenium-Alleviated Hepatocyte Necrosis and DNA Damage in Cyclophosphamide-Treated Geese by Mitigating Oxidative Stress

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Selenium (Se) has been well recognized as an immune-enhancing agent with antioxidant and anti-tumor properties. The commonly used chemotherapy drug, cyclophosphamide (CTX), induces liver injury by increasing the reactive oxygen species (ROS) level. However, little is known about how Se alleviates CTX-induced liver injury in geese. In this study, 90 male Magang geese (3 days old) were randomly allocated into three groups (control, CTX, and Se + CTX group) with three replicates per group and ten geese per replicate. The control and CTX groups were fed a basal diet (Se content was 0.03 mg/kg). The Se + CTX group was fed a basal diet containing 0.44 mg/kg sodium selenite (Se content was 0.2 + 0.03 mg/kg). The control group was injected with 0.5 mL saline, while the CTX and Se + CTX groups were injected with CTX at 40 mg/kg body weight per day on days 21–23. The liver index, liver histology, and ultra-micromorphology detected antioxidant enzyme activity in the liver and serum. In addition, we detected the liver marker enzymes and protein levels in serum, and hepatocyte DNA damage. Se could alleviate liver development dysregulation, hepatocyte structural damage, the disturbances in antioxidant enzyme (GPx, CAT, and SOD) activity, and malondialdehyde (MDA) levels in the serum and liver. Besides, Se could alleviate the dysregulation of liver marker enzyme (ALT and AST) activity and protein (ALB and TP) levels in the serum, and DNA migration induced by CTX. In conclusion, Se may inhibit hepatocyte necrosis and DNA damage by inhibiting CTX-induced oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Xu D, Tian Y (2015) Selenium and polysaccharides of Atractylodes macrocephala Koidz play different roles in improving the immune response induced by heat stress in chickens. Biol Trace Elem Res 168(1):235–241

    Article  CAS  PubMed  Google Scholar 

  2. Xu D, Li W, Huang Y, He J, Tian Y (2014) The effect of selenium and polysaccharide of Atractylodes macrocephala Koidz. (PAMK) on immune response in chicken spleen under heat stress. Biol Trace Elem Res 160(2):232–237

    Article  CAS  PubMed  Google Scholar 

  3. Yao H et al (2013) Selenoprotein W serves as an antioxidant in chicken myoblasts. Biochim Biophys Acta 1830(4):3112–3120

    Article  CAS  PubMed  Google Scholar 

  4. El-Bayoumy K, Sinha R (2004) Mechanisms of mammary cancer chemoprevention by organoselenium compounds. Mutat Res Fundam Mol Mech Mutagen 551(1–2):181–197

    Article  CAS  Google Scholar 

  5. Zheng S, Xing H, Zhang Q, Xue H, Zhu F, Xu S (2018) Pharmacokinetics of sodium selenite administered orally in blood and tissues of selenium-deficient ducklings. Biol Trace Elem Res. https://doi.org/10.1007/s12011-018-1567-8

  6. Milošević M et al (2018) Role of selenium and vitamin C in mitigating oxidative stress induced by fenitrothion in rat liver. Biomed Pharmacother 106:232–238

    Article  CAS  PubMed  Google Scholar 

  7. Wang Y, Xiao X, Zhan X (2018) Antagonistic effects of different selenium sources on growth inhibition, oxidative damage, and apoptosis induced by fluorine in broilers. Poult Sci 97(9):3207–3217

    Article  CAS  PubMed  Google Scholar 

  8. Li B, Liu Y, Li W, Tian Y, Xu D, Cao N (2018) Effect of selenium on ion profiles and antioxidant defense in mice livers. Biol Trace Elem Res 184(1):127–135

    Article  CAS  PubMed  Google Scholar 

  9. Ognjanovi B et al (2012) Lipid peroxidative damage on cisplatin exposure and alterations in antioxidant defense system in rat kidneys: a possible protective effect of selenium. Int J Mol Sci 13(2):1790–1803

    Article  CAS  Google Scholar 

  10. Wang F, Shu G, Peng X, Fang J, Chen K, Cui H, Chen Z, Zuo Z, Deng J, Geng Y, Lai W (2013) Protective effects of sodium selenite against aflatoxin B1-induced oxidative stress and apoptosis in broiler spleen. Int J Environ Res Public Health 10(7):2834–2844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Young B et al (2013) The role of cyclophosphamide in enhancing antitumor efficacy of an adenovirus oncolytic vector in subcutaneous Syrian hamster tumors. Cancer Gene Ther 20(9):521–530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ettaya A, Dhibi S, Samout N, Elfeki A, Hfaiedh N (2016) Hepatoprotective activity of white horehound (Marrubium vulgare) extract against cyclophosphamide toxicity in male rats. Can J Physiol Pharmacol 94(4):441–447

    Article  CAS  PubMed  Google Scholar 

  13. Huang G et al (2013) Hepatoprotective effects of eburicoic acid and dehydroeburicoic acid from Antrodia camphorata in a mouse model of acute hepatic injury. Food Chem 141(3):3020–3027

    Article  CAS  PubMed  Google Scholar 

  14. Mythili Y, Sudharsan PT, Selvakumar E, Varalakshmi P (2004) Protective effect of DL-alpha-lipoic acid on cyclophosphamide induced oxidative cardiac injury. Chem Biol Interact 151(1):13–19

    Article  CAS  PubMed  Google Scholar 

  15. Zhao X, Wang Y, Yan P, Cheng G, Wang C, Geng N, Wang X, Liu J (2017) Effects of polysaccharides from platycodon grandiflorum on immunity-enhancing activity in vitro. Molecules 22(11):1918. https://doi.org/10.3390/molecules22111918

    Article  CAS  PubMed Central  Google Scholar 

  16. Sanchez-Valle V, C. Chavez-Tapia N, Uribe M, Mendez-Sanchez N (2012) Role of oxidative stress and molecular changes in liver fibrosis: a review. Curr Med Chem 19(28):4850–4860

    Article  CAS  PubMed  Google Scholar 

  17. Wang Y, Zhao H, Guo M, Shao Y, Liu J, Jiang G, Xing M (2018) Arsenite renal apoptotic effects in chickens co-aggravated by oxidative stress and inflammatory response. Metallomics 10(12):1805–1813

    Article  CAS  PubMed  Google Scholar 

  18. Zhao H, Wang Y, Shao Y, Liu J, Wang S, Xing M (2018) Oxidative stress-induced skeletal muscle injury involves in NF-kappaB/p53-activated immunosuppression and apoptosis response in copper (II) or/and arsenite-exposed chicken. Chemosphere 210:76–84

    Article  CAS  PubMed  Google Scholar 

  19. Li A et al (2014) Resources and biological activities of natural polyphenols. Nutrients 6(12):6020–6047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gunes S, Sahinturk V, Karasati P, Sahin IK, Ayhanci A (2017) Cardioprotective effect of selenium against cyclophosphamide-induced cardiotoxicity in rats. Biol Trace Elem Res 177(1):107–114

    Article  CAS  PubMed  Google Scholar 

  21. Gunes S, Sahinturk V, Uslu S, Ayhanci A, Kacar S, Uyar R (2018) Protective effects of selenium on cyclophosphamide-induced oxidative stress and kidney injury. Biol Trace Elem Res 185(1):116–123

    Article  CAS  PubMed  Google Scholar 

  22. Bhattacharjee A, Basu A, Biswas J, Bhattacharya S (2015) Nano-Se attenuates cyclophosphamide-induced pulmonary injury through modulation of oxidative stress and DNA damage in Swiss albino mice. Mol Cell Biochem 405(1–2):243–256

    Article  CAS  PubMed  Google Scholar 

  23. Li W, Guo S, Xu D, Li B, Cao N, Tian Y, Jiang Q (2018) Polysaccharide of Atractylodes macrocephala Koidz (PAMK) relieves immunosuppression in cyclophosphamide-treated geese by maintaining a humoral and cellular immune balance. Molecules 23(4):E932. https://doi.org/10.3390/molecules23040932

    Article  CAS  PubMed  Google Scholar 

  24. Wang W, Chen M, Jin X, Li X, Yang Z, Lin H, Xu S (2018) H2S induces Th1/Th2 imbalance with triggered NF-κB pathway to exacerbate LPS-induce chicken pneumonia response. Chemosphere 208:241–246

    Article  CAS  PubMed  Google Scholar 

  25. Zheng S, Jin X, Chen M, Shi Q, Zhang H, Xu S (2019) Hydrogen sulfide exposure induces jejunum injury via CYP450s/ROS pathway in broilers. Chemosphere 214:25–34

    Article  CAS  PubMed  Google Scholar 

  26. Singh C, Prakash C, Tiwari KN, Mishra SK, Kumar V (2018) Premna integrifolia ameliorates cyclophosphamide-induced hepatotoxicity by modulation of oxidative stress and apoptosis. Biomed Pharmacother 107:634–643

    Article  CAS  PubMed  Google Scholar 

  27. Fouad A, Qutub H, Al-Melhim W (2016) Punicalagin alleviates hepatotoxicity in rats challenged with cyclophosphamide. Environ Toxicol Pharmacol 45:158–162

    Article  CAS  PubMed  Google Scholar 

  28. Kamel E et al (2016) A phytochemical and computational study on flavonoids isolated from Trifolium resupinatum L. and their novel hepatoprotective activity. Food Funct 7(4):2094–2106

    Article  CAS  PubMed  Google Scholar 

  29. Ahmadi A, Hosseinimehr SJ, Naghshvar F, Hajir E, Ghahremani M (2008) Chemoprotective effects of hesperidin against genotoxicity induced by cyclophosphamide in mice bone marrow cells. Arch Pharm Res 31(6):794–797

    Article  CAS  PubMed  Google Scholar 

  30. Jiang W, Liu J, Li P, Lu Q, Pei X, Sun Y, Wang G, Hao K (2017) Magnesium isoglycyrrhizinate shows hepatoprotective effects in a cyclophosphamide-induced model of hepatic injury. Oncotarget 8(20):33252–33264

    PubMed  PubMed Central  Google Scholar 

  31. Wang Y, Zhao H, Shao Y, Liu J, Li J, Luo L, Xing M (2018) Copper (II) and/or arsenite-induced oxidative stress cascades apoptosis and autophagy in the skeletal muscles of chicken. Chemosphere 206:597–605

    Article  CAS  PubMed  Google Scholar 

  32. Elshater A et al (2018) Fullerene C 60 nanoparticles ameliorated cyclophosphamide-induced acute hepatotoxicity in rats. Biomed Pharmacother 97:53–59

    Article  CAS  PubMed  Google Scholar 

  33. Selvakumar E, Prahalathan C, Mythili Y, Varalakshmi P (2005) Beneficial effects of dl-alpha-lipoic acid on cyclophosphamide-induced oxidative stress in mitochondrial fractions of rat testis. Chem Biol Interact 152(1):59–66

    Article  CAS  PubMed  Google Scholar 

  34. Jin X, Jia T, Liu R, Xu S (2018) The antagonistic effect of selenium on cadmium-induced apoptosis via PPAR-γ/PI3K/Akt pathway in chicken pancreas. J Hazard Mater 357:355–362

    Article  CAS  PubMed  Google Scholar 

  35. Yao H et al (2013) Gene expression of endoplasmic reticulum resident selenoproteins correlates with apoptosis in various muscles of Se-deficient chicks. J Nutr 143(5):613–619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang Y, Zhan XA, Yuan D, Zhang XW, Wu RJ (2011) Influence of dietary selenomethionine supplementation on performance and selenium status of broiler breeders and their subsequent progeny. Biol Trace Elem Res 143(3):1497–1507

    Article  CAS  PubMed  Google Scholar 

  37. Talas Z et al (2009) Antioxidative effects of novel synthetic organoselenium compound in rat lung and kidney. Ecotoxicol Environ Saf 72(3):916–921

    Article  CAS  PubMed  Google Scholar 

  38. Godoy P, Hewitt NJ, Albrecht U, Andersen ME, Ansari N, Bhattacharya S, Bode JG, Bolleyn J, Borner C, Böttger J, Braeuning A, Budinsky RA, Burkhardt B, Cameron NR, Camussi G, Cho CS, Choi YJ, Craig Rowlands J, Dahmen U, Damm G, Dirsch O, Donato MT, Dong J, Dooley S, Drasdo D, Eakins R, Ferreira KS, Fonsato V, Fraczek J, Gebhardt R, Gibson A, Glanemann M, Goldring CEP, Gómez-Lechón MJ, Groothuis GMM, Gustavsson L, Guyot C, Hallifax D, Hammad S, Hayward A, Häussinger D, Hellerbrand C, Hewitt P, Hoehme S, Holzhütter HG, Houston JB, Hrach J, Ito K, Jaeschke H, Keitel V, Kelm JM, Kevin Park B, Kordes C, Kullak-Ublick GA, LeCluyse EL, Lu P, Luebke-Wheeler J, Lutz A, Maltman DJ, Matz-Soja M, McMullen P, Merfort I, Messner S, Meyer C, Mwinyi J, Naisbitt DJ, Nussler AK, Olinga P, Pampaloni F, Pi J, Pluta L, Przyborski SA, Ramachandran A, Rogiers V, Rowe C, Schelcher C, Schmich K, Schwarz M, Singh B, Stelzer EHK, Stieger B, Stöber R, Sugiyama Y, Tetta C, Thasler WE, Vanhaecke T, Vinken M, Weiss TS, Widera A, Woods CG, Xu JJ, Yarborough KM, Hengstler JG (2013) Recent advances in 2D and 3D in vitro systems using primary hepatocytes, alternative hepatocyte sources and non-parenchymal liver cells and their use in investigating mechanisms of hepatotoxicity, cell signaling and ADME. Arch Toxicol 87(8):1315–1530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Dalia A et al (2017) The effect of dietary bacterial organic selenium on growth performance, antioxidant capacity, and selenoproteins gene expression in broiler chickens. BMC Vet Res 13(1):254. https://doi.org/10.1186/s12917-017-1159-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sefi M, Ben Amara I, Troudi A, Soudani N, Hakim A, Zeghal KM, Boudawara T, Zeghal N (2012) Effect of selenium on methimazole-induced liver damage and oxidative stress in adult rats and their offspring. Toxicol Ind Health 30(7):653–669

    Article  CAS  PubMed  Google Scholar 

  41. Senthilkumar S, Devaki T, Manohar BM, Babu MS (2006) Effect of squalene on cyclophosphamide-induced toxicity. Clin Chim Acta 364(1–2):335–342

    Article  CAS  PubMed  Google Scholar 

  42. Al-Jafari A et al (2011) Human platelet acetylcholinesterase inhibition by cyclophosphamide: a combined experimental and computational approach. CNS Neurol Disord Drug Targets 10(8):928–935

    Article  CAS  PubMed  Google Scholar 

  43. Amara I et al (2012) Dimethoate induced oxidative damage and histopathological changes in lung of adult rats: modulatory effects of selenium and/or vitamin E. Biomed Environ Sci 25(3):340–351

    PubMed  Google Scholar 

  44. Dechsupa S, Yingsakmongkol W, Limthongkul W, Singhatanadgige W, Honsawek S (2018) Relative telomere length and oxidative DNA damage in hypertrophic ligamentum flavum of lumbar spinal stenosis. PeerJ 6:e5381. https://doi.org/10.7717/peerj.5381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Abd El-Moneim O, Abd El-Rahim A, Hafiz N (2018) Evaluation of selenium nanoparticles and doxorubicin effect against hepatocellular carcinoma rat model cytogenetic toxicity and DNA damage. Toxicol Rep 5:771–776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bhattacharjee A et al (2013) Protective effect of selenium nanoparticle against cyclophosphamide induced hepatotoxicity and genotoxicity in Swiss albino mice. J Biomater Appl 29(2):303–317

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We appreciate the support of Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou 510225, China.

Funding

This work was supported by the National Key Technologies R&D Program of China (No. 2016YFD0501605), Major Research Project in Universities of Guangdong Province (No. 2017KZDXM046), Inter-governmental S & T Exchanges Project between China and Belarus (No. CB01-13), and Science & Technology Planning Project of Guangzhou (No. 201604020061).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Danning Xu or Nan Cao.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, B., Li, W., Tian, Y. et al. Selenium-Alleviated Hepatocyte Necrosis and DNA Damage in Cyclophosphamide-Treated Geese by Mitigating Oxidative Stress. Biol Trace Elem Res 193, 508–516 (2020). https://doi.org/10.1007/s12011-019-01717-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-019-01717-3

Keywords

Navigation