Skip to main content
Log in

Beneficial Effects of N-Acetyl-L-cysteine or Taurine Pre- or Post-treatments in the Heart, Spleen, Lung, and Testis of Hexavalent Chromium-Exposed Mice

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Hexavalent chromium[Cr(VI)] compounds may induce toxic effects, possibly via reactive intermediates and radicals formed during Cr(VI) reduction. In this study, we probed the possible effects of N-acetyl-L-cysteine (NAC) and taurine pre- or post-treatments on Cr(VI)-induced changes in lipid peroxidation and nonprotein thiols (NPSH) in mice heart, lung, spleen, and testis tissues. The mice were randomly assigned to six groups, consisting of control, Cr(VI)-exposed (20 mg Cr/kg, intraperitoneal ,ip), NAC (200 mg/kg, ip) as pre-treatment and post-treatment, and taurine (1 g/kg, ip) pre-treatment and post-treatment groups. Lipid peroxidation and NPSH levels were determined and the results were compared with regard to tissue- and antioxidant-specific basis. Exposure to Cr(VI) significantly increased lipid peroxidation in all tissues as compared to the control (p < 0.05); and consistent with this data, NPSH levels were significantly decreased (p < 0.05). Notably, administration of NAC and taurine, either before or after Cr(VI) exposure, was able to ameliorate the lipid peroxidation (p < 0.05) in all tissues. In the case of NPSH content, while the decline could be alleviated by both NAC and taurine pre- and post-treatments in the spleen, diverging results were obtained in other tissues. The effects of Cr(VI) on the lung thiols were abolished by pre-treatment with NAC and taurine; however, post-treatments could not exert significant effect. While thiol depletion in the heart was totally replenished by NAC and taurine administrations, NAC pre-treatment was partially more effective than post-treatment. In contrast with lipid peroxidation data, NAC treatment could not provide a statistically significant beneficial effect on NPSH content of the testis, whereas the effect in this tissue by taurine was profound. Thus, these data highlight the importance of tissue-specific factors and the critical role of administration time. Overall, our data suggest that NAC and taurine may have potential in prevention of Cr(VI)-induced toxicity in the heart, lung, spleen, and testis tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. De Flora S (2000) Threshold mechanisms and site specificity in chromium(VI) carcinogenesis. Carcinogenesis 21:533–541. https://doi.org/10.1093/carcin/21.4.533

    Article  PubMed  Google Scholar 

  2. EFSA NDA Panel (European Food Safety Authority Panel on Dietetic Products, Nutrition and Allergies) (2014) Scientific opinion on dietary reference values for chromium. EFSA J 12(10):3845, 25 pp. https://doi.org/10.2903/j.efsa.2014.3845

    Article  CAS  Google Scholar 

  3. Jiang L, Vincent JB, Bailey MM (2018) [Cr3O(O2CCH2CH3)6(H2O)3]NO3·H2O (Cr3) toxicity potential in bacterial and mammalian cells. Biol Trace Elem Res 183(2):342–350. https://doi.org/10.1007/s12011-017-1132-x

    Article  CAS  PubMed  Google Scholar 

  4. National Toxicology Program (2011) Chromium hexavalent compounds. Rep Carcinog Carcinog profiles / US Dept Heal Hum Serv Public Heal Serv 12:106–109

    Google Scholar 

  5. Pan C-H, Jeng HA, Lai C-H (2017) Biomarkers of oxidative stress in electroplating workers exposed to hexavalent chromium. J Expo Sci Environ Epidemiol 28:76–83. https://doi.org/10.1038/jes.2016.85

    Article  CAS  PubMed  Google Scholar 

  6. Xu X, Yekeen TA, Liu J, Zhuang B, Li W, Huo X (2015) Chromium exposure among children from an electronic waste recycling town of China. Environ Sci Pollut Res 22:1778–1785. https://doi.org/10.1007/s11356-013-2345-y

    Article  CAS  Google Scholar 

  7. Goullé JP, Saussereau E, Grosjean J, Doche C, Mahieu L, Thouret JM, Guerbet M, Lacroix C (2012) Accidental potassium dichromate poisoning. Toxicokinetics of chromium by ICP-MS-CRC in biological fluids and in hair. Forensic Sci Int 217:e8–e12. https://doi.org/10.1016/j.forsciint.2011.10.020

    Article  CAS  PubMed  Google Scholar 

  8. Kinoshita H, Ameno K, Sumi Y, Kumihashi M, Ijiri I, Ameno S, Kubota A, Hishida S (2003) Evidence of hexavalent chromium ingestion. J Forensic Sci 48:631–632

    Article  PubMed  Google Scholar 

  9. Boşgelmez II, Söylemezoǧlu T, Güvendik G (2008) The protective and antidotal effects of taurine on hexavalent chromium-induced oxidative stress in mice liver tissue. Biol Trace Elem Res 125:46–58. https://doi.org/10.1007/s12011-008-8154-3

    Article  CAS  PubMed  Google Scholar 

  10. Boşgelmez II, Güvendik G (2004) Effects of taurine on oxidative stress parameters and chromium levels altered by acute hexavalent chromium exposure in mice kidney tissue. Biol Trace Elem Res 102:209–225. https://doi.org/10.1385/BTER:102:1-3:209

    Article  PubMed  Google Scholar 

  11. Chang HR, Tsao DA, Tseng WC (2011) Hexavalent chromium inhibited the expression of RKIP of heart in vivo and in vitro. Toxicol in Vitro 25:1–6. https://doi.org/10.1016/j.tiv.2010.06.012

    Article  CAS  PubMed  Google Scholar 

  12. Ding SZ, Yang YX, Li XL, Michelli-Rivera A, Han SY, Wang L, Pratheeshkumar P, Wang X, Lu J, Yin YQ, Budhraja A, Hitron AJ (2013) Epithelial-mesenchymal transition during oncogenic transformation induced by hexavalent chromium involves reactive oxygen species-dependent mechanism in lung epithelial cells. Toxicol Appl Pharmacol 269:61–71. https://doi.org/10.1016/j.taap.2013.03.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Das Neves RP, Santos TM, De Pereira ML, De Jesus JP (2001) Chromium(VI) induced alterations in mouse spleen cells: a short-term assay. Cytobios 106 Suppl:27–34

  14. Kumar KM, Aruldhas MM, Banu SL, Sadasivam B, Vengatesh G, Ganesh KM, Navaneethabalakrishnan S, Navin AK, Michael FM, Venkatachalam S, Stanley JA, Ramachandran I, Banu SK, Akbarsha MA (2017) Male reproductive toxicity of CrVI: in-utero exposure to CrVI at the critical window of testis differentiation represses the expression of Sertoli cell tight junction proteins and hormone receptors in adult F1-progeny rats. Reprod Toxicol 69:84–98. https://doi.org/10.1016/j.reprotox.2017.02.007

    Article  CAS  PubMed  Google Scholar 

  15. Samuel JB, Stanley JA, Sekar P, Princess RA, Sebastian MS, Aruldhas MM (2014) Persistent hexavalent chromium exposure impaired the pubertal development and ovarian histoarchitecture in wistar rat offspring. Environ Toxicol 29:814–828. https://doi.org/10.1002/tox.21810

    Article  CAS  PubMed  Google Scholar 

  16. Hojo Y, Okado A, Kawazoe S, Mizutani T (2000) Direct evidence for in vivo hydroxyl radical generation in blood of mice after acute chromium(VI) intake: electron spin resonance spin-trapping investigation. Biol Trace Elem Res 76:75–84. https://doi.org/10.1385/BTER:76:1:75

    Article  CAS  PubMed  Google Scholar 

  17. Ahmad MK, Syma S, Mahmood R (2011) Cr(VI) induces lipid peroxidation, protein oxidation and alters the activities of antioxidant enzymes in human erythrocytes. Biol Trace Elem Res 144:426–435. https://doi.org/10.1007/s12011-011-9119-5

    Article  CAS  PubMed  Google Scholar 

  18. Shi X, Chiu A, Chen CT et al (1999) Reduction of chromium (VI) and its relationship to carcinogenesis. J Toxicol Environ Health B Crit Rev 2:87–104. https://doi.org/10.1080/109374099281241

    Article  CAS  PubMed  Google Scholar 

  19. Liu KJ, Shi X (2001) In vivo reduction of chromium (VI) and its related free radical generation. Mol Cell Biochem 222:41–47. https://doi.org/10.1023/A:1017994720562

    Article  CAS  PubMed  Google Scholar 

  20. Hojo Y, Satomi Y (1991) In vivo nephrotoxicity induced in mice by chromium(VI)-involvement of glutathione and chromium(V). Biol Trace Elem Res 31:21–31. https://doi.org/10.1007/BF02990356

    Article  CAS  PubMed  Google Scholar 

  21. Zhong X, Zeng M, Bian H, Zhong C, Xiao F (2017) An evaluation of the protective role of Vitamin C in reactive oxygen species-induced hepatotoxicity due to hexavalent chromium in vitro and in vivo. J Occup Med Toxicol 12:15. https://doi.org/10.1186/s12995-017-0161-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Boşgelmez İİ, Güvendik G (2017) N-Acetyl-L-cysteine protects liver and kidney against chromium(VI)-induced oxidative stress in mice. Biol Trace Elem Res 178:44–53. https://doi.org/10.1007/s12011-016-0901-2

    Article  CAS  PubMed  Google Scholar 

  23. Hao P, Zhu Y, Wang S, Wan H, Chen P, Wang Y, Cheng Z, Liu Y, Liu J (2017) Selenium administration alleviates toxicity of chromium(VI) in the chicken brain. Biol Trace Elem Res 178:127–135. https://doi.org/10.1007/s12011-016-0915-9

    Article  CAS  PubMed  Google Scholar 

  24. Arivarasu NA, Priyamvada S, Mahmood R (2012) Caffeic acid inhibits chromium(VI)-induced oxidative stress and changes in brush border membrane enzymes in rat intestine. Biol Trace Elem Res 148:209–215. https://doi.org/10.1007/s12011-012-9349-1

    Article  CAS  PubMed  Google Scholar 

  25. Dekhuijzen PNR (2004) Antioxidant properties of N-acetylcysteine: their relevance in relation to chronic obstructive pulmonary disease. Eur Respir J 23:629–636. https://doi.org/10.1183/09031936.04.00016804

    Article  CAS  PubMed  Google Scholar 

  26. Klein-Schwartz W, Doyon S (2011) Intravenous acetylcysteine for the treatment of acetaminophen overdose. Expert Opin Pharmacother 12:119–130. https://doi.org/10.1517/14656566.2011.537261

    Article  CAS  PubMed  Google Scholar 

  27. Fishbane S (2008) N-acetylcysteine in the prevention of contrast-induced nephropathy. Clin J Am Soc Nephrol 3:281–287. https://doi.org/10.2215/CJN.02590607

    Article  CAS  PubMed  Google Scholar 

  28. Yin J, Ren W, Yang G, Duan J, Huang X, Fang R, Li C, Li T, Yin Y, Hou Y, Kim SW, Wu G (2016) L-Cysteine metabolism and its nutritional implications. Mol Nutr Food Res 60:134–146. https://doi.org/10.1002/mnfr.201500031

    Article  CAS  Google Scholar 

  29. Atkuri KR, Mantovani JJ, Herzenberg LA, Herzenberg LA (2007) N-Acetylcysteine-a safe antidote for cysteine/glutathione deficiency. Curr Opin Pharmacol 7:355–359. https://doi.org/10.1016/j.coph.2007.04.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Schaffer S, Kim HW (2018) Effects and mechanisms of taurine as a therapeutic agent. Biomol Ther 26:225–241. https://doi.org/10.4062/biomolther.2017.251

    Article  CAS  Google Scholar 

  31. Kuo CH, Wang KC, Tian TF, Tsai MH, Chiung YM, Hsiech CM, Tsai SJ, Wang SY, Tsai DM, Huang CC, Tseng YJ (2012) Metabolomic characterization of laborers exposed to welding fumes. Chem Res Toxicol 25:676–686. https://doi.org/10.1021/tx200465e

    Article  CAS  PubMed  Google Scholar 

  32. Oudit GY, Trivieri MG, Khaper N, Husain T, Wilson GJ, Liu P, Sole MJ, Backx PH (2004) Taurine supplementation reduces oxidative stress and improves cardiovascular function in an iron-overload murine model. Circulation 109:1877–1885. https://doi.org/10.1161/01.CIR.0000124229.40424.80

    Article  CAS  PubMed  Google Scholar 

  33. Chowdhury S, Sinha K, Banerjee S, Sil PC (2016) Taurine protects cisplatin induced cardiotoxicity by modulating inflammatory and endoplasmic reticulum stress responses. BioFactors 42:647–664. https://doi.org/10.1002/biof.1301

    Article  CAS  PubMed  Google Scholar 

  34. Alhumaidha KA, Saleh DO, Abd El Fattah MA et al (2015) Cardiorenal protective effect of taurine against cyclophosphamide-induced toxicity in albino rats. Can J Physiol Pharmacol 94:131–139. https://doi.org/10.1139/cjpp-2015-0138

    Article  CAS  PubMed  Google Scholar 

  35. Men X, Han S, Gao J, Cao G, Zhang L, Yu H, Lu H, Pu J (2010) Taurine protects against lung damage following limb ischemia reperfusion in the rat by attenuating endoplasmic reticulum stress-induced apoptosis. Acta Orthop 81:265–269. https://doi.org/10.3109/17453671003587085

    Article  Google Scholar 

  36. Bircan FS, Balabanli B, Turkozkan N, Ozan G (2011) Effects of taurine on nitric oxide and 3-nitrotyrosine levels in spleen during endotoxemia. Neurochem Res 36:1978–1983. https://doi.org/10.1007/s11064-011-0521-3

    Article  CAS  PubMed  Google Scholar 

  37. Abdel-Moneim AM (2013) Effects of taurine against histomorphological and ultrastructural changes in the testes of mice exposed to aluminium chloride. Arh Hig Rada Toksikol 64:405–414. https://doi.org/10.2478/10004-1254-64-2013-2322

    Article  CAS  PubMed  Google Scholar 

  38. Ueno S, Susa N, Furukawa Y, Sugiyama M (1995) Formation of paramagnetic chromium in liver of mice treated with dichromate (VI). Toxicol Appl Pharmacol 135:165–171. https://doi.org/10.1006/taap.1995.1219

    Article  CAS  PubMed  Google Scholar 

  39. Henderson P, Hale TW, Shum S, Habersang RW (1985) N-Acetylcysteine therapy of acute heavy metal poisoning in mice. Vet Hum Toxicol 27:522–525

    CAS  PubMed  Google Scholar 

  40. Zwingmann C, Bilodeau M (2006) Metabolic insights into the hepatoprotective role of N-acetylcysteine in mouse liver. Hepatology 43:454–463. https://doi.org/10.1002/hep.21075

    Article  CAS  PubMed  Google Scholar 

  41. Hamaguchi T, Azuma J, Awata N, Ohta H, Takihara K, Harada H, Kishimoto S, Sperelakis N (1988) Reduction of doxorubicin-induced cardiotoxicity in mice by taurine. Res Commun Chem Pathol Pharmacol 59:21–30

    CAS  PubMed  Google Scholar 

  42. Korang K, Milakofsky L, Hare TA, Hofford JM, Vogel WH (1996) Levels of taurine, amino acids and related compounds in plasma, vena cava, aorta and heart of rats after taurine administration. Pharmacology 52:263–270. https://doi.org/10.1159/000139391

    Article  CAS  PubMed  Google Scholar 

  43. Rungby J, Ernst E (1992) Experimentally induced lipid peroxidation after exposure to chromium, mercury or silver: interactions with carbon tetrachloride. Pharmacol Toxicol 70:205–207. https://doi.org/10.1111/j.1600-0773.1992.tb00458.x

    Article  CAS  PubMed  Google Scholar 

  44. Sedlak J, Lindsay RH (1968) Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Anal Biochem 25:192–205. https://doi.org/10.1016/0003-2697(68)90092-4

    Article  CAS  PubMed  Google Scholar 

  45. Illner N, Gerth J, Pfeiffer R, Bruns T, Wolf G (2009) “Nearly a stairway to heaven”-severe dichromate intoxication in a young man. Clin Nephrol 71:338–341. https://doi.org/10.5414/CNP71338

    Article  CAS  PubMed  Google Scholar 

  46. Stohs SJ, Bagchi D (1995) Oxidative mechanisms in the toxicity of metal ions. Free Radic Biol Med 18:321–336. https://doi.org/10.1016/0891-5849(94)00159-H

    Article  CAS  Google Scholar 

  47. Soudani N, Troudi A, Bouaziz H, Ben Amara I, Boudawara T, Zeghal N (2011) Cardioprotective effects of selenium on chromium (VI)-induced toxicity in female rats. Ecotoxicol Environ Saf 74:513–520. https://doi.org/10.1016/j.ecoenv.2010.06.009

    Article  CAS  PubMed  Google Scholar 

  48. Acharya UR, Mishra M, Tripathy RR, Mishra I (2006) Testicular dysfunction and antioxidative defense system of Swiss mice after chromic acid exposure. Reprod Toxicol 22:87–91. https://doi.org/10.1016/j.reprotox.2005.11.004

    Article  CAS  PubMed  Google Scholar 

  49. García-Niño WR, Zatarain-Barrón ZL, Hernández-Pando R, Vega-García CC, Tapia E, Pedraza-Chaverri J (2015) Oxidative stress markers and histological analysis in diverse organs from rats treated with a hepatotoxic dose of Cr(VI): effect of curcumin. Biol Trace Elem Res 167:130–145. https://doi.org/10.1007/s12011-015-0283-x

    Article  CAS  PubMed  Google Scholar 

  50. Rosic G, Selakovic D, Joksimovic J, Srejovic I, Zivkovic V, Tatalović N, Orescanin-Dusic Z, Mitrovic S, Ilic M, Jakovljevic V (2016) The effects of N-acetylcysteine on cisplatin-induced changes of cardiodynamic parameters within coronary autoregulation range in isolated rat hearts. Toxicol Lett 242:34–46. https://doi.org/10.1016/j.toxlet.2015.11.028

    Article  CAS  PubMed  Google Scholar 

  51. Zaki SM, Abdalla IL, El Sadik AO, Mohamed EA, Kaooh S (2018) Protective role of N-acetylcysteine on isoprenaline-induced myocardial injury: histological, immunohistochemical and morphometric study. Cardiovasc Toxicol 18:9–23. https://doi.org/10.1007/s12012-017-9407-1

    Article  CAS  PubMed  Google Scholar 

  52. Krockova J, Massanyi P, Ondruska L, et al (2016) Effect of taurine administration on the morphometric parameters of rabbit spleen in vivo. in: Pavlik, A and Slama, P and Skarpa P (ed) Animal physiology 2016. Mendel Univ Brno, Zemedelska 1, Brno, 613 00, Czech Republic, pp 139–145

  53. Das J, Kang MH, Kim E, Kwon DN, Choi YJ, Kim JH (2015) Hexavalent chromium induces apoptosis in male somatic and spermatogonial stem cells via redox imbalance. Sci Rep 5:13921. https://doi.org/10.1038/srep13921

    Article  PubMed  PubMed Central  Google Scholar 

  54. Aly HAA, Khafagy RM (2014) Taurine reverses endosulfan-induced oxidative stress and apoptosis in adult rat testis. Food Chem Toxicol 64:1–9. https://doi.org/10.1016/j.fct.2013.11.007

    Article  CAS  PubMed  Google Scholar 

  55. Adedara IA, Olabiyi BF, Ojuade TD et al (2017) Taurine reverses sodium fluoride-mediated increase in inflammation, caspase-3 activity, and oxidative damage along the brain–pituitary–gonadal axis in male rats. Can J Physiol Pharmacol 95:1019–1029. https://doi.org/10.1139/cjpp-2016-0641

    Article  CAS  PubMed  Google Scholar 

  56. Samuni Y, Goldstein S, Dean OM, Berk M (2013) The chemistry and biological activities of N-acetylcysteine. Biochim Biophys Acta - Gen Subj 1830:4117–4129. https://doi.org/10.1016/j.bbagen.2013.04.016

    Article  CAS  Google Scholar 

  57. Blanusa M, Varnai V, Piasek M, Kostial K (2005) Chelators as antidotes of metal toxicity: therapeutic and experimental aspects. Curr Med Chem 12:2771–2794. https://doi.org/10.2174/092986705774462987

    Article  CAS  PubMed  Google Scholar 

  58. Brauer SL, Hneihen AS, McBride JS, Wetterhahn KE (1996) Chromium(VI) forms thiolate complexes with gamma-glutamylcysteine, N-acetylcysteine, cysteine, and the methyl ester of N-acetylcysteine. Inorg Chem 35:373–381. https://doi.org/10.1021/ic941452d

    Article  CAS  PubMed  Google Scholar 

  59. Medina-Campos ON, Barrera D, Segoviano-Murillo S, Rocha D, Maldonado PD, Mendoza-Patiño N, Pedraza-Chaverri J (2007) S-Allylcysteine scavenges singlet oxygen and hypochlorous acid and protects LLC-PK1 cells of potassium dichromate-induced toxicity. Food Chem Toxicol 45:2030–2039. https://doi.org/10.1016/j.fct.2007.05.002

    Article  CAS  PubMed  Google Scholar 

  60. Leung R, Venus C, Zeng T, Tsopmo A (2018) Structure-function relationships of hydroxyl radical scavenging and chromium-VI reducing cysteine-tripeptides derived from rye secalin. Food Chem 254:165–169. https://doi.org/10.1016/j.foodchem.2018.01.190

    Article  CAS  PubMed  Google Scholar 

  61. Lambert IH, Kristensen DM, Holm JB, Mortensen OH (2015) Physiological role of taurine - from organism to organelle. Acta Physiol 213(1):191–212. https://doi.org/10.1111/apha.12365

    Article  CAS  Google Scholar 

  62. De Mattia G, Bravi MC, Laurenti O et al (2004) Impairment of cell and plasma redox state in subjects professionally exposed to chromium. Am J Ind Med 46:120–125. https://doi.org/10.1002/ajim.20044

    Article  CAS  PubMed  Google Scholar 

  63. Goulart M, Batoréu MC, Rodrigues AS, Laires A, Rueff J (2005) Lipoperoxidation products and thiol antioxidants in chromium exposed workers. Mutagenesis 20:311–315. https://doi.org/10.1093/mutage/gei043

    Article  CAS  PubMed  Google Scholar 

  64. Meister A (1995) Glutathione metabolism. In: Methods in Enzymology. pp 3–7

  65. Lu SC (2009) Regulation of glutathione synthesis. Mol Asp Med 30:42–59. https://doi.org/10.1016/j.mam.2008.05.005

    Article  CAS  Google Scholar 

  66. Gunaratnam M, Pohlscheidt M, Grant MH (2002) Pretreatment of rats with the inducing agents phenobarbitone and 3-methylcholanthrene ameliorates the toxicity of chromium (VI) in hepatocytes. Toxicol in Vitro 16:509–516. https://doi.org/10.1016/S0887-2333(02)00040-1

    Article  CAS  PubMed  Google Scholar 

  67. Sen CK (1997) Nutritional biochemistry of cellular glutathione. J Nutr Biochem 8:660–672. https://doi.org/10.1016/S0955-2863(97)00113-7

    Article  CAS  Google Scholar 

  68. Burgunder JM, Varriale A, Lauterburg BH (1989) Effect of N-acetylcysteine on plasma cysteine and glutathione following paracetamol administration. Eur J Clin Pharmacol 36(2):127–131. https://doi.org/10.1007/BF00609183

    Article  CAS  PubMed  Google Scholar 

  69. De Flora S, Romano M, Basso C et al (1986) Detoxifying activities in alveolar macrophages of rats treated with acetylcysteine, diethyl maleate and/or aroclor. Anticancer Res 6:1009–1012

    PubMed  Google Scholar 

  70. Luczak MW, Zhitkovich A (2013) Role of direct reactivity with metals in chemoprotection by N-acetylcysteine against chromium(VI), cadmium(II), and cobalt(II). Free Radic Biol Med 65:262–269. https://doi.org/10.1016/j.freeradbiomed.2013.06.028

    Article  CAS  PubMed  Google Scholar 

  71. Wetterhahn KE, Hamilton JW (1989) Molecular basis of hexavalent chromium carcinogenicity: effect on gene expression. Sci Total Environ 86:113–129

    Article  CAS  PubMed  Google Scholar 

  72. Afolaranmi GA, Grant HM (2013) The effect of ascorbic acid on the distribution of soluble Cr and Co ions in the blood and organs of rats. J Appl Toxicol 33:220–226. https://doi.org/10.1002/jat.1744

    Article  CAS  PubMed  Google Scholar 

  73. Bergamini S, Rota C, Canali R, Staffieri M, Daneri F, Bini A, Giovannini F, Tomasi A, Iannone A (2001) N-Acetylcysteine inhibits in vivo nitric oxide production by inducible nitric oxide synthase. Nitric Oxide 5:349–360. https://doi.org/10.1006/niox.2001.0356

    Article  CAS  PubMed  Google Scholar 

  74. Wang A, Wang J, Wang H et al (2006) A dual effect of N-acetylcysteine on acute ethanol-induced liver damage in mice. Hepatol Res 34:199–206. https://doi.org/10.1016/j.hepres.2005.12.005

    Article  CAS  PubMed  Google Scholar 

  75. Izzotti A, Bagnasco M, Camoirano A, Orlando M, de Flora S (1998) DNA fragmentation, DNA-protein crosslinks,32P postlabeled nucleotidic modifications, and 8-hydroxy-2′-deoxyguanosine in the lung but not in the liver of rats receiving intratracheal instillations of chromium(VI). Chemoprevention by oral N-acetylcysteine. Mutat Res 400:233–244. https://doi.org/10.1016/S0027-5107(98)00028-1

    Article  CAS  PubMed  Google Scholar 

  76. Fu J, Liang X, Chen Y, Tang L, Zhang QH, Dong Q (2008) Oxidative stress as a component of chromium-induced cytotoxicity in rat calvarial osteoblasts. Cell Biol Toxicol 24:201–212. https://doi.org/10.1007/s10565-007-9029-7

    Article  CAS  PubMed  Google Scholar 

  77. Yang J, Zong X, Wu G, Lin S, Feng Y, Hu J (2015) Taurine increases testicular function in aged rats by inhibiting oxidative stress and apoptosis. Amino Acids 47:1549–1558. https://doi.org/10.1007/s00726-015-1995-0

    Article  CAS  PubMed  Google Scholar 

  78. Bridgeman MME, Marsden M, Selby C et al (1994) Effect of N-acetyl cysteine on the concentrations of thiols in plasma, bronchoalveolar lavage fluid, and lung tissue. Thorax 49:670–675. https://doi.org/10.1136/thx.49.7.670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Maheshwari A, Misro MM, Aggarwal A, Sharma RK (2012) N-Acetyl-L-cysteine modulates multiple signaling pathways to rescue male germ cells from apoptosis induced by chronic hCG administration to rats. Apoptosis 17:551–565. https://doi.org/10.1007/s10495-012-0703-8

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Dr. T. Söylemezoğlu and Dr. A. Boşgelmez are acknowledged for their kind and generous comments, and S. Çalış for perfect technical assistance during experimental animal handling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to İ. İpek Boşgelmez.

Ethics declarations

For care and use of animals, all applicable international and national guidelines were followed, and experimental design was approved by Ankara University Local Committee for Ethics.

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Gülin Güvendik is an Emeritus Prof.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boşgelmez, İ.İ., Güvendik, G. Beneficial Effects of N-Acetyl-L-cysteine or Taurine Pre- or Post-treatments in the Heart, Spleen, Lung, and Testis of Hexavalent Chromium-Exposed Mice. Biol Trace Elem Res 190, 437–445 (2019). https://doi.org/10.1007/s12011-018-1571-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-018-1571-z

Keywords

Navigation