Skip to main content
Log in

Effect of Selenium Nanoparticle Supplementation on Tissue Inflammation, Blood Cell Count, and IGF-1 Levels in Spinal Cord Injury-Induced Rats

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Selenium is known to be a neuroprotective agent in respect to a number of neuronal diseases and pain. The aim of this study was to evaluate the neuroprotective effect of the oral administration of selenium nanoparticles in rats with spinal cord injury (SCI). Forty adult female rats were randomly assigned to two equal groups as experimental and control. Under general inhalation anesthesia, in both groups, SCI was created, at the T9–10 level of the column. On the third day after the operation, a supplement of selenium nanoparticle was administered to the experimental group at 0.2 mg/kg per day. The histology of the site of injury, IGF-1 serum concentrations, and changes in the white blood cells were examined in both groups at different pre-surgical and post-surgical times. The results of the current study showed a significant decrease in the total white blood cells, including lymphocyte, neutrophil, and monocyte in the experimental group compared to the control group. Histological evaluation showed that the inflammatory responses reduced significantly in the experimental group compared to the control group. In conclusion, we speculate that the decrease in the number of inflammatory cells after oral administration of the selenium nanoparticles is due to the neuroprotective effects of this nanoparticle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. van den Berg ME, Castellote JM, Mahillo-Fernandez I, de Pedro-Cuesta J (2010) Incidence of spinal cord injury worldwide: a systematic review. Neuroepidemiology 34:184–192

    Article  Google Scholar 

  2. Hartkopp A, Bronnum-Hansen H, Seidenschnur AM, Biering-Sorensen F (1997) Survival and cause of death after traumatic spinal cord injury. A long-term epidemiological survey from Denmark. Spinal Cord 35:76–85

    Article  CAS  Google Scholar 

  3. Samson G, Cardenas DD (2007) Neurogenic bladder in spinal cord injury. Phys Med Rehabil Clin N Am 18(2):255–274

    Article  Google Scholar 

  4. Pickelsimer E, Shiroma EJ, Wilson DA (2010) Statewide investigation of medically attended adverse health conditions of persons with spinal cord injury. J Spinal Cord Med 33:221–231

    Article  Google Scholar 

  5. Tator CH, Fehlings MG (1991) Review of the secondary injury theory of acute spinal cord trauma with emphasis on vascular mechanisms. J Neurosurg 75(1):15–26

    Article  CAS  Google Scholar 

  6. Wilson JR, Forgione N, Fehlings MG (2013) Emerging therapies for acute traumatic spinal cord injury. Can Med Assoc J 185(6):485–492

    Article  Google Scholar 

  7. Anwar MA, Al Shehabi TS, Eid AH (2016) Inflammogenesis of secondary spinal cord injury. Front Cell Neurosci 10

  8. Wyndaele M, Wyndaele JJ (2006) Incidence prevalence and epidemiology of spinal cord injury: what learns a worldwide literature survey? Spinal Cord 44(9):523–529

    Article  CAS  Google Scholar 

  9. Kojouri GA, Sadeghian S, Mohebbi A, Mokhber Dezfouli MR (2012) The effects of oral consumption of selenium nanoparticles on chemotactic and respiratory burst activities of neutrophils in comparison with sodium selenite in sheep. Biol Trace Elem Res 146:160–166

    Article  CAS  Google Scholar 

  10. Uguz AC, Naziroglu M (2012) Effects of selenium on calcium signaling and apoptosis in rat dorsal root ganglion neurons induced by oxidative stress. Neurochem Res 37:1631–1638

    Article  CAS  Google Scholar 

  11. Wirth EK, Conrad M, Winterer J, Wozny C, Carlson BA, Roth S, Schmitz D, Bornkamm GW, Coppola V, Tessarollo L, Schomburg L, Köhrle J, Hatfield DL, Schweizer U (2010) Neuronal selenoprotein expression is required for interneuron development and prevents seizures and neurodegeneration. FASEB J 24(3):844–852

    Article  CAS  Google Scholar 

  12. McKenzie RC, Arthur JR, Beckett GJ (2002) Selenium and the regulation of cell signaling, growth, and survival: molecular and mechanistic aspects. Antioxid Redox Signal 4(2):339–351

    Article  CAS  Google Scholar 

  13. Schweizer U, Bräuer AU, Köhrle J, Nitsch R, Savaskan NE (2004) Selenium and brain function: a poorly recognized liaison. Brain Res Brain Res Rev 45(3):164–178

    Article  CAS  Google Scholar 

  14. Nazıroğlu M (2009) Role of selenium on calcium signaling and oxidative stress-induced molecular pathways in epilepsy. Neurochem Res 34(12):2181–2191

    Article  Google Scholar 

  15. Savas S, Briollais L, Ibrahim-zada I, Jarjanazi H, Choi YH, Musquera M, Fleshner N, Venkateswaran V, Ozcelik H (2010) A whole-genome SNP association study of NCI60 cell line panel indicates a role of Ca2+ signaling in selenium resistance. PLoS One 5(9):e12601

    Article  Google Scholar 

  16. Uğuz AC, Nazıroğlu M, Espino J, Bejarano I, González D, Rodríguez AB, Pariente JA (2009) Selenium modulates oxidative stress-induced cell apoptosis in human myeloid HL-60 cells through regulation of calcium release and caspase-3 and-9 activities. J Membr Biol 232(1–3):15–23

    Article  Google Scholar 

  17. Nazıroğlu M, Muhamad S, Pecze L (2017) Nanoparticles as potential clinical therapeutic agents in Alzheimer’s disease: focus on selenium nanoparticles. Expert Rev Clin Pharmacol 10(7):773–782

    Article  Google Scholar 

  18. Kahya MC, Naziroğlu M, Çiğ B (2015) Melatonin and selenium reduce plasma cytokine and brain oxidative stress levels in diabetic rats. Brain Inj 29(12):1490–1496

    Article  Google Scholar 

  19. Zendedel A, Gharibi Z, Anbari K, Abbaszadeh A, Khayat ZK, Khorramabadi RM et al (2017) Selenium ameliorate peripheral nerve ischemic-reperfusion injury via decreased TNF-α. Biol Trace Elem Res 176(2):328–337

    Article  CAS  Google Scholar 

  20. Zhang J, Wang H, Bao Y, Zhang L (2004) Nano red elemental selenium has no size effect in the induction of seleno-enzymes in both cultured cells and mice. Life Sci 75:237–244

    Article  CAS  Google Scholar 

  21. Sun X, Jones ZB, Chen XM, Zhou L, So KF, Ren Y (2016) Multiple organ dysfunction and systemic inflammation after spinal cord injury: a complex relationship. J Neuroinflammation 13(1):260

    Article  Google Scholar 

  22. Kopp MA, Druschel C, Meisel C, Liebscher T, Prilipp E, Watzlawick R, Cinelli P, Niedeggen A, Schaser KD, Wanner GA, Curt A, Lindemann G, Nugaeva N, Fehlings MG, Vajkoczy P, Cabraja M, Dengler J, Ertel W, Ekkernkamp A, Martus P, Volk HD, Unterwalder N, Kölsch U, Brommer B, Hellmann RC, Ossami Saidy RR, Laginha I, Prüss H, Failli V, Dirnagl U, Schwab JM (2013) The SCIentinel study—prospective multicenter study to define the spinal cord injury-induced immune depression syndrome (SCI-IDS)-study protocol and interim feasibility data. BMC Neurol 13(1):168

    Article  Google Scholar 

  23. Bao F, Bailey CS, Gurr KR, Bailey SI, Rosas-Arellano MP, Dekaban GA, Weaver LC (2009) Increased oxidative activity in human blood neutrophils and monocytes after spinal cord injury. Exp Neurol 215(2):308–316

    Article  CAS  Google Scholar 

  24. Zahed NS, Karimi Mahali Z (2015) Evaluation of cutoff point and power of neutrophil to lymphocyte ratio in diagnosing chronic inflammation in end-stage renal disease (ESDR) patients. IJBMS 58(6):289–294

    Google Scholar 

  25. FA AL-h, Alfallaj MM, Alahmari AN, Almazyd AN, Alsaeed TK, Abdurrahman AA et al (2017) Relationship between neutrophil to lymphocyte ratio and stress in multiple sclerosis patients. J Clin Diagn Res 11(5):CC01–CC04

    Google Scholar 

  26. Liu X, Shen Y, Wang H, Ge Q, Fei A, Pan S (2016) Prognostic significance of neutrophil-to-lymphocyte ratio in patients with sepsis: a prospective observational study. Mediat Inflamm Article ID 8191254

  27. Iwase T, Sangai T, Sakakibara M, Sakakibara J, Ishigami E, Hayama S, Nakagawa A, Masuda T, Tabe S, Nagashima T (2017) An increased neutrophil-to-lymphocyte ratio predicts poorer survival following recurrence for patients with breast cancer. Mol Clin Oncol 6(2):266–270

    Article  CAS  Google Scholar 

  28. Cao Y-Z, Weaver JA, Reddy CC, Sordillo LM (2002) Selenium deficiency alters the formation of eicosanoids and signal transduction in rat lymphocytes. Prostaglandins Other Lipid Mediat 70:131–1431

    Article  CAS  Google Scholar 

  29. Neirinckx V, Coste C, Franzen R, Gothot A, Rogister B, Wislet S (2014) Neutrophil contribution to spinal cord injury and repair. J Neuroinflammation 11(150):1–9

    Google Scholar 

  30. Savaskan NE, Brauer AU, Kuhbacher M, Eyupoglu IY, Kyriakopoulos A, Ninnemann O (2003) Selenium deficiency increases susceptibility to glutamate-induced excitotoxicity. FASEB J 17(1):112–114

    Article  CAS  Google Scholar 

  31. Gu J, Royland JE, Wiggins RC, Konat GW (1997) Selenium is required for normal upregulation of myelin genes in differentiating oligodendrocytes. J Neurosci Res 47(6):626–635

    Article  CAS  Google Scholar 

  32. Duntas LH (2009) Selenium and inflammation: underlying anti-inflammatory mechanisms. Horm Metab Res 41:443–447

    Article  CAS  Google Scholar 

  33. Duntas LH (2006) The role of selenium in thyroid autoimmunity and cancer. Thyroid 16:455–460

    Article  CAS  Google Scholar 

  34. Ahrens I, Ellwanger C, Smith BK, Bassler N, Chen YC, Neudorfer I, Ludwig A, Bode C, Peter K (2008) Selenium supplementation induces metalloproteinase-dependent L-selectin shedding from monocytes. J Leukoc Biol 83(6):1388–1395

    Article  CAS  Google Scholar 

  35. Mangiola A, Vigo V, Anile C, De Bonis P, Marziali G, Lofrese G (2015) Role and importance of IGF-1 in traumatic brain injuries. Biomed Res Int 736104,

  36. Niblock MM, Brunso-Bechtold JK, Riddle DR (2000) Insulin-like growth factor I stimulates dendritic growth in primary somatosensory cortex. J Neurosci 20(11):4165–4176

    Article  CAS  Google Scholar 

  37. Vergani L, Di Giulio AM, Losa M, Rossoni G, Muller EE, Gorio A (1998) Systemic administration of insulin-like growth factor decreases motor neuron cell death and promotes muscle reinnervation. J Neurosci Res 54(6):840–847

    Article  CAS  Google Scholar 

  38. Tiangco DA, Papakonstantinou KC, Mullinax KA, Terzis JK (2001) IGF-I and end-to-side nerve repair: a dose-response study. J Reconstr Microsurg 17(04):247–256

    Article  CAS  Google Scholar 

  39. Aydin K, Bideci A, Kendirci M, Cinaz P, Kurtoglu S (2003) Insulin-like growth factor-I and insulin-like growth factor binding protein-3 levels of children living in an iodine-and selenium-deficient endemic goiter area. Biol Trace Elem Res 90(1):25–30

    Google Scholar 

  40. Karl JP, Alemany JA, Koenig C, Kraemer WJ, Frystyk J, Flyvbjerg A et al (2009) Diet, body composition, and physical fitness influences on IGF-I bioactivity in women. Growth Hormon IGF Res 19(6):491–496

    Article  CAS  Google Scholar 

  41. Gronbaek H, Frystyk J, Ørskov H, Flyvbjerg A (1995) Effect of sodium selenite on growth, insulin-like growth factor-binding proteins and insulin-like growth factor-I in rats. J Endocrinol 145(1):105–112

    Article  CAS  Google Scholar 

  42. Vunta H, Belda BJ, Arner RJ, Channa Reddy C, Vanden Heuvel JP, Sandeep Prabhu K (2008) Selenium attenuates pro-inflammatory gene expression in macrophages. Mol Nutr Food Res 52:1316–1323

    Article  CAS  Google Scholar 

  43. Zhang F, Yu W, Hargrove JL, Greenspan P, Dean RG, Taylor EW, Hartle DK (2002) Inhibition of TNF-alpha induced ICAM-1, VCAM-1 and E-selectin expression by selenium. Atherosclerosis 161:381–386

    Article  CAS  Google Scholar 

  44. Wang L, Fuster M, Sriramarao P, Esko JD (2005) Endothelial heparin sulfate deficiency impairs L-selectin and chemokine-mediated neutrophil trafficking during inflammatory responses. Nat Immunol 6:902–910

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moosa Javdani.

Ethics declarations

All the investigational procedures used in this study were reviewed and approved by the Council of the Department of Veterinary Clinical Sciences of Shahrekord University (170-630).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Javdani, M., Habibi, A., Shirian, S. et al. Effect of Selenium Nanoparticle Supplementation on Tissue Inflammation, Blood Cell Count, and IGF-1 Levels in Spinal Cord Injury-Induced Rats. Biol Trace Elem Res 187, 202–211 (2019). https://doi.org/10.1007/s12011-018-1371-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-018-1371-5

Keywords

Navigation