Skip to main content

Advertisement

Log in

Positive PCNA and Ki-67 Expression in the Testis Correlates with Spermatogenesis Dysfunction in Fluoride-Treated Rats

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The present study aimed to evaluate the effect of fluoride (F) on spermatogenesis in male rats. F at 50 and 100 mg/L was administered for 70 days, after which the testicular and epididymis tissues were collected to observe the histopathological structure under a light microscope. The ultrastructure of the testis and sperm was also examined via transmission electron microscopy. The apoptosis of spermatogenic cells was measured through terminal deoxynucleotidyl transferase dUTP nick end labeling staining. The expression of proliferation factors, namely, proliferating cell nuclear antigen (PCNA) and Ki-67, in the testicular and epididymis tissues, were assayed through immunohistochemistry. F at 50 and 100 mg/L significantly damaged the structure of the testis and epididymis, and the testis and sperm ultrastructure exhibited various changes, including mitochondrial swelling and vacuolization, and apsilated and raised sperm membrane. F treatment significantly increased spermatogenic cell apoptosis in the testis. PCNA (P < 0.01) and Ki-67 (P < 0.01) also presented positive expression in the testis. By comparison, no significant changes occurred in the epididymis. In summary, excessive F intake results in spermatogenesis dysfunction by damaging the testicular structure and inducing spermatogenic cell apoptosis in male rats. The positive expression level of PCNA and Ki-67 was a good response to spermatogenesis dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Griswold MD (2016) Spermatogenesis: the commitment to meiosis. Physiol Rev 96(1):1–17

    Article  CAS  Google Scholar 

  2. Yao C, Liu Y, Sun M, Niu M, Yuan Q, Hai Y, Guo Y, Chen Z, Hou J, Liu Y, He Z (2015) MicroRNAs and DNA methylation as epigenetic regulators of mitosis, meiosis and spermiogenesis. Reproduction 150(1):R25–R34

    Article  CAS  Google Scholar 

  3. Angelopoulou R, Balla M, Lavranos G, Chalikias M, Kitsos C, Baka S, Kittas C (2008) Evaluation of immunohistochemical markers of germ cells’ proliferation in the developing rat testis: a comparative study. Tissue Cell 40(1):43–50

    Article  CAS  Google Scholar 

  4. Steger K, Aleithe I, Behre H, Bergmann M (1998) The proliferation of spermatogonia in normal and pathological human seminiferous epithelium: an immunohistochemical study using monoclonal antibodies against Ki-67 protein and proliferating cell nuclear antigen. Mol Hum Reprod 4(3):227–233

    Article  CAS  Google Scholar 

  5. Wrobel KH, Bickel D, Kujat R (1996) Immunohistochemical study of seminiferous epithelium in adult bovine testis using monoclonal antibodies against Ki-67 protein and proliferating cell nuclear antigen (PCNA). Cell Tissue Res 283(2):191–201

    Article  CAS  Google Scholar 

  6. Park JM, Yang SW, Yu KR, Ka SH, Lee SW, Seol JH, Jeon YJ, Chung CH (2014) Modification of PCNA by ISG15 plays a crucial role in termination of error-prone translesion DNA synthesis. Mol Cell 54(4):626–638

    Article  CAS  Google Scholar 

  7. Kubota T, Nishimura K, Kanemaki MT, Donaldson AD (2013) The Elg1 replication factor C-like complex functions in PCNA unloading during DNA replication. Mol Cell 50(2):273–280

    Article  CAS  Google Scholar 

  8. ADe B, de Opakua AI, Mortuza GB, Molina R, Cordeiro TN, Castillo F, Villate M, Merino N, Delgado S, Gil-Cartón D, Luque I, Diercks T, Bernadó P, Montoya G, Blanco FJ (2015) Structure of p15 (PAF)-PCNA complex and implications for clamp sliding during DNA replication and repair. Nat Commun 6:6439

    Article  Google Scholar 

  9. Mac Callum DE, Hall PA (2000) The biochemical characterization of the DNA binding activity of pKi67. J Pathol 191(3):286–298

    Article  CAS  Google Scholar 

  10. Takagi M, Natsume T, Kanemaki MT, Imamoto N (2016) Perichromosomal protein Ki67 supports mitotic chromosome architecture. Genes Cells 21(10):1113–1124

    Article  CAS  Google Scholar 

  11. Vielh P, Chevillard S, Mosseri V, Donatini B, Magdelenat H (1990) Ki67 index and S-phase fraction in human breast carcinomas. Comparison and correlations with prognostic factors. Am J Clin Pathol 94(6):681–686

    Article  CAS  Google Scholar 

  12. Gerdes J, Schwab U, Lemke H, Stein H (1983) Production of a mouse monoclonal antibody reactive with a human nuclear antigen associated with cell proliferation. Int J Cancer 31(1):13–20

    Article  CAS  Google Scholar 

  13. Su K, Sun Z, Niu R, Lei Y, Cheng J, Wang J (2017) Cell cycle arrest and gene expression profiling of testis in mice exposed to fluoride. Environ Toxicol 32(5):1558–1565

    Article  CAS  Google Scholar 

  14. Zhang S, Jiang C, Liu H, Guan Z, Zeng Q, Zhang C, Lei R, Xia T, Gao H, Yang L, Chen Y, Wu X, Zhang X, Cui Y, Yu L, Wang Z, Wang A (2013) Fluoride-elicited developmental testicular toxicity in rats: roles of endoplasmic reticulum stress and inflammatory response. Toxicol Appl Pharmacol 271(2):206–215

    Article  CAS  Google Scholar 

  15. Wang HW, Zhao WP, Liu J, Tan PP, Zhang C, Zhou BH (2017) Fluoride-induced oxidative stress and apoptosis are involved in the reducing of oocytes development potential in mice. Chemosphere 186:911–918

    Article  CAS  Google Scholar 

  16. Wang HW, Zhao WP, Tan PP, Liu J, Zhao J, Zhou BH (2017) The MMP-9/TIMP-1 system is involved in fluoride-induced reproductive dysfunctions in female mice. Biol Trace Elem Res 178(2):253–260

    Article  CAS  Google Scholar 

  17. Zhang J, Li Z, Qie M, Zheng R, Shetty J, Wang J (2016) Sodium fluoride and sulfur dioxide affected male reproduction by disturbing blood-testis barrier in mice. Food Chem Toxicol 94:103–111

    Article  CAS  Google Scholar 

  18. Han H, Sun Z, Luo G, Wang C, Wei R, Wang J (2015) Fluoride exposure changed the structure and the expressions of reproductive related genes in the hypothalamus-pituitary-testicular axis of male mice. Chemosphere 135:297–303

    Article  CAS  Google Scholar 

  19. Wang HW, Zhou BH, Cao JW, Zhao J, Zhao WP, Tan PP (2017) Pro-inflammatory cytokines are involved in fluoride-induced cytotoxic potential in HeLa cells. Biol Trace Elem Res 175(1):98–102

    Article  CAS  Google Scholar 

  20. Dvoráková-Hortová K, Sandera M, Jursová M, Vasinová J, Peknicová J (2008) The influence of fluorides on mouse sperm capacitation. Anim Reprod Sci 108(1–2):157–170

    Article  Google Scholar 

  21. Sun Z, Niu R, Wang B, Wang J (2014) Altered sperm chromatin structure in mice exposed to sodium fluoride through drinking water. Environ Toxicol 29(6):690–696

    Article  CAS  Google Scholar 

  22. Cao J, Chen Y, Chen J, Yan H, Li M, Wang J (2016) Fluoride exposure changed the structure and the expressions of Y chromosome related genes in testes of mice. Chemosphere 161:292–299

    Article  CAS  Google Scholar 

  23. Sun Z, Niu R, Wang B, Jiao Z, Wang J, Zhang J, Wang S, Wang J (2011) Fluoride-induced apoptosis and gene expression profiling in mice sperm in vivo. Arch Toxicol 85(11):1441–1452

    Article  CAS  Google Scholar 

  24. Sm S, Mahaboob Basha P (2017) Fluoride exposure aggravates the testicular damage and sperm quality in diabetic mice: protective role of ginseng and banaba. Biol Trace Elem Res 177(2):331–344

    Article  Google Scholar 

  25. Zhao Y, Zhao J, Wang J, Wang J (2017) Fluoride exposure changed the structure and the expressions of HSP related genes in testes of pubertal rats. Chemosphere 184:1080–1088

    Article  CAS  Google Scholar 

  26. Nguyen Ngoc TD, Son YO, Lim SS, Shi X, Kim JG, Heo JS, Choe Y, Jeon YM, Lee JC (2012) Sodium fluoride induces apoptosis in mouse embryonic stem cells through ROS-dependent and caspase- and JNK-mediated pathways. Toxicol Appl Pharmacol 259(3):329–337

    Article  CAS  Google Scholar 

  27. Zhou BH, Zhao J, Liu J, Zhang JL, Li J, Wang HW (2015) Fluoride-induced oxidative stress is involved in the morphological damage and dysfunction of liver in female mice. Chemosphere 139:504–511

    Article  CAS  Google Scholar 

  28. Sun Z, Zhang W, Li S, Xue X, Niu R, Shi L, Wang X, Wang J (2016) Altered miRNAs expression profiling in sperm of mice induced by fluoride. Chemosphere 155:109–114

    Article  CAS  Google Scholar 

  29. Juríková M, Danihel Ľ, Polák Š, Varga I (2016) Ki67, PCNA, and MCM proteins: markers of proliferation in the diagnosis of breast cancer. Acta Histochem 118(5):544–552

    Article  Google Scholar 

  30. Bologna-Molina R, Mosqueda-Taylor A, Molina-Frechero N, Mori-Estevez AD, Sánchez-Acuña G (2013) Comparison of the value of PCNA and Ki-67 as markers of cell proliferation in ameloblastic tumors. Med Oral Patol Oral Cir Bucal 18(2):e174–e179

    Article  Google Scholar 

  31. Li N, Deng W, Ma J, Wei B, Guo K, Shen W, Zhang Y, Luo S (2015) Prognostic evaluation of Nanog, Oct4, Sox2, PCNA, Ki67 and E-cadherin expression in gastric cancer. Med Oncol 32(1):433

    Article  Google Scholar 

  32. Unek G, Ozmen A, Mendilcioglu I, Simsek M, Korgun ET (2014) The expression of cell cycle related proteins PCNA, Ki67, p27 and p57 in normal and preeclamptic human placentas. Tissue Cell 46(3):198–205

    Article  CAS  Google Scholar 

  33. Coşarcă AS, Mocan SL, Păcurar M, Fülöp E, Ormenişan A (2016) The evaluation of Ki67, p53, MCM3 and PCNA immunoexpressions at the level of the dental follicle of impacted teeth, dentigerous cysts and keratocystic odontogenic tumors. Romanian J Morphol Embryol 57(2):407–412

    Google Scholar 

  34. Sobecki M, Mrouj K, Camasses A, Parisis N, Nicolas E, Llères D, Gerbe F, Prieto S, Krasinska L, David A, Eguren M, Birling MC, Urbach S, Hem S, Déjardin J, Malumbres M, Jay P, Dulic V, DLj L, Feil R, Fisher D (2016) The cell proliferation antigen Ki-67 organises heterochromatin. elife e13722:5

    Google Scholar 

  35. Cuylen S, Blaukopf C, Politi AZ, Müller-Reichert T, Neumann B, Poser I, Ellenberg J, Hyman AA, Gerlich DW (2016) Ki-67 acts as a biological surfactant to disperse mitotic chromosomes. Nature 535(7611):308–312

    Article  CAS  Google Scholar 

  36. Wit N, Buoninfante OA, van den Berk PC, Jansen JG, Hogenbirk MA, de Wind N, Jacobs H (2015) Roles of PCNA ubiquitination and TLS polymerases κ and η in the bypass of methyl methanesulfonate-induced DNA damage. Nucleic Acids Res 43(1):282–294

    Article  CAS  Google Scholar 

  37. Boehm EM, Powers KT, Kondratick CM, Spies M, Houtman JC, Washington MT (2016) The proliferating cell nuclear antigen (PCNA)-interacting protein (PIP) motif of DNA polymerase η mediates its interaction with the C-terminal domain of rev1. J Biol Chem 291(16):8735–8744

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is sponsored by the National Natural Science Foundation of China (grant no. 31201963) and Henan Colleges and universities National College Students’ innovation and entrepreneurship training program project (grant no. 201710464026).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hong-wei Wang or Bian-hua Zhou.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Wp., Wang, Hw., Liu, J. et al. Positive PCNA and Ki-67 Expression in the Testis Correlates with Spermatogenesis Dysfunction in Fluoride-Treated Rats. Biol Trace Elem Res 186, 489–497 (2018). https://doi.org/10.1007/s12011-018-1338-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-018-1338-6

Keywords

Navigation