Skip to main content
Log in

Effect of Organic Selenium Supplementation on Selenium Status, Oxidative Stress, and Antioxidant Status in Selenium-Adequate Dairy Cows During the Periparturient Period

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The periparturient period represents a stressful time for dairy cows as they transition from late gestation to early lactation. Oxidation stress occurs during this period owing to the increased metabolic activity. Antioxidants supplementation slightly above the suggested requirements may be beneficial in relieving this kind of stress. The objective of this study was to determine whether supplementing selenium (Se) yeast to diets with adequate Se concentrations affects Se status, oxidative stress, and antioxidant status in dairy cows during the periparturient period. Twenty multiparous Holstein cows were randomly divided into two groups with ten replicates in each group. During the last 4 weeks before calving, cows were fed Se-yeast at 0 (control) or 0.3 mg Se/kg dry matter (Se-yeast supplementation), in addition to Na selenite at 0.3 mg Se/kg dry matter in their rations. The concentrations of Se, reactive oxygen species (ROS), hydrogen peroxide (H2O2), hydroxyl radical, malonaldehyde (MDA), α-tocopherol and glutathione (GSH), the activities of glutathione peroxidase (GSH-Px), superoxide dismutase (SOD) and catalase (CAT), and the total antioxidant capacity (T-AOC) in plasma or erythrocyte of dairy cows were measured at 21 and 7 days prepartum, and at 7 and 21 days postpartum. Cows fed Se-yeast supplement during the last 4 weeks of gestation had higher plasma Se and lower MDA concentrations at 7 days prepartum, and at 7 and 21 days postpartum, and had higher whole blood Se and lower plasma ROS and H2O2 concentrations at 7 and 21 days postpartum compared with control cows. Se-yeast supplementation increased plasma and erythrocyte GSH-Px activities and erythrocyte GSH concentration at 7 days postpartum as compared to Se-adequate control cows. Compared with control cows, the enhanced SOD and CAT activities, increased α-tocopherol and GSH concentrations, and improved T-AOC in plasma at 7 and 21 days postpartum in Se-yeast-supplemented cows were also observed in this study. The results indicate that feeding Se-adequate cows a Se-yeast supplement during late gestation increases plasma Se status, improves antioxidant function, and relieves effectively oxidative stress occurred in early lactation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Castillo C, Hernandez J, Bravo A, Lopezalonso M, Pereira V, Benedito JL (2005) Oxidative status during late pregnancy and early lactation in dairy cows. Vet J 169(2):286–292. https://doi.org/10.1016/j.tvjl.2004.02.001

    Article  CAS  PubMed  Google Scholar 

  2. Abuelo A, Hernandez J, Benedito JL, Castillo C (2015) The importance of the oxidative status of dairy cattle in the periparturient period: revisiting antioxidant supplementation. J Anim Physiol Anim Nutr (Berl) 99(6):1003–1016. https://doi.org/10.1111/jpn.12273

    Article  CAS  Google Scholar 

  3. Bell AW (1995) Regulation of organic nutrient metabolism during transition from late pregnancy to early lactation. J Anim Sci 73(9):2804–2819

    Article  CAS  Google Scholar 

  4. Gitto E, Reiter RJ, Karbownik M, Tan DX, Gitto P, Barberi S, Barberi I (2002) Causes of oxidative stress in the pre- and perinatal period. Neonatology 81(3):146–157. https://doi.org/10.1159/000051527

    Article  CAS  Google Scholar 

  5. Trevisan M, Browne RW, Ram M, Muti P, Freudenheim JL, Carosella AM, Armstrong D (2001) Correlates of markers of oxidative status in the general population. Am J Epidemiol 154(4):348–356

    Article  CAS  Google Scholar 

  6. Lykkesfeldt J, Svendsen O (2007) Oxidants and antioxidants in disease: oxidative stress in farm animals. Vet J 173(3):502–511. https://doi.org/10.1016/j.tvjl.2006.06.005

    Article  CAS  PubMed  Google Scholar 

  7. Waller KP (2000) Mammary gland immunology around parturition. Influence of stress, nutrition and genetics. Adv Exp Med Biol 480:231–245. https://doi.org/10.1007/0-306-46832-8_29

    Article  CAS  PubMed  Google Scholar 

  8. Castillo C, Hernandez J, Valverde I, Pereira V, Sotillo J, Alonso ML, Benedito JL (2006) Plasma malonaldehyde (MDA) and total antioxidant status (TAS) during lactation in dairy cows. Res Vet Sci 80(2):133–139. https://doi.org/10.1016/j.rvsc.2005.06.003

    Article  CAS  PubMed  Google Scholar 

  9. Dimri U, Ranjan R, Sharma MC, Varshney VP (2010) Effect of vitamin E and selenium supplementation on oxidative stress indices and cortisol level in blood in water buffaloes during pregnancy and early postpartum period. Trop Anim Health Prod 42(3):405–410. https://doi.org/10.1007/s11250-009-9434-4

    Article  PubMed  Google Scholar 

  10. Sordillo LM, Raphael W (2013) Significance of metabolic stress, lipid mobilization, and inflammation on transition cow disorders. Vet Clin N Am Food Anim Pract 29(2):267–278. https://doi.org/10.1016/j.cvfa.2013.03.002

    Article  Google Scholar 

  11. Leblanc SJ, Lissemore KD, Kelton DF, Duffield TF, Leslie KE (2006) Major advances in disease prevention in dairy cattle. J Dairy Sci 89(4):1267–1279. https://doi.org/10.3168/jds.S0022-0302(06)72195-6

    Article  CAS  PubMed  Google Scholar 

  12. Ingvartsen KL, Dewhurst RJ, Friggens NC (2003) On the relationship between lactational performance and health: is it yield or metabolic imbalance that cause production diseases in dairy cattle? A position paper. Livest Prod Sci 83(2):277–308

    Article  Google Scholar 

  13. Sordillo LM, Aitken SL (2009) Impact of oxidative stress on the health and immune function of dairy cattle. Vet Immunol Immunopathol 128:104–109. https://doi.org/10.1016/j.vetimm.2008.10.305

    Article  CAS  PubMed  Google Scholar 

  14. Mehdi Y, Dufrasne I (2016) Selenium in cattle: a review. Molecules 21(4):545. https://doi.org/10.3390/molecules21040545

    Article  CAS  PubMed  Google Scholar 

  15. NRC (2001) Nutrient requirements of dairy cattle. 7th edn. The National Academies Press, Washington DC, USA

  16. Castillo C, Pereira V, Abuelo A, Hernandez J (2013) Effect of supplementation with antioxidants on the quality of bovine milk and meat production. Sci World J 2013:616098–616105. doi:https://doi.org/10.1155/2013/616098, 1

    Article  Google Scholar 

  17. Gressley TF (2009) Zinc, copper, manganese, and selenium in dairy cattle rations. In: Proceedings of the 7th annual mid-Atlantic nutrition conference, 2009. North Baltimore, USA, pp 65–71

  18. Overton TR, Yasui T (2014) Practical applications of trace minerals for dairy cattle. J Anim Sci 92(2):416–426. https://doi.org/10.2527/jas.2013-7145

    Article  CAS  PubMed  Google Scholar 

  19. Hall JA, Harwell AM, Van Saun RJ, Vorachek WR, Stewart WC, Galbraith ML, Hooper KJ, Hunter JK, Mosher WD, Pirelli GJ (2011) Agronomic biofortification with selenium: effects on whole blood selenium and humoral immunity in beef cattle. Anim Feed Sci Technol 164(3):184–190

    Article  CAS  Google Scholar 

  20. Hall JA, Bobe G, Vorachek WR, Hugejiletu, Gorman ME, Mosher WD, Pirelli GJ (2013) Effects of feeding selenium-enriched alfalfa hay on immunity and health of weaned beef calves. Biol Trace Elem Res 156:96–110. doi:https://doi.org/10.1007/s12011-013-9843-0

    Article  CAS  Google Scholar 

  21. Hall JA, Bobe G, Hunter JK, Vorachek WR, Stewart WC, Vanegas JA, Estill CT, Mosher WD, Pirelli GJ (2013) Effect of feeding selenium-fertilized alfalfa hay on performance of weaned beef calves. PLoS One 8(3):e58188. https://doi.org/10.1371/journal.pone.0058188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hall JA, Bobe G, Vorachek WR, Kasper K, Traber MG, Mosher WD, Pirelli GJ, Gamroth M (2014) Effect of supranutritional organic selenium supplementation on postpartum blood micronutrients, antioxidants, metabolites, and inflammation biomarkers in selenium-replete dairy cows. Biol Trace Elem Res 161(3):272–287. https://doi.org/10.1007/s12011-014-0107-4

    Article  CAS  PubMed  Google Scholar 

  23. Hall JA, Bobe G, Vorachek WR, Estill CT, Mosher WD, Pirelli GJ, Gamroth M (2014) Effect of supranutritional maternal and colostral selenium supplementation on passive absorption of immunoglobulin G in selenium-replete dairy calves. J Dairy Sci 97(7):4379–4391. https://doi.org/10.3168/jds.2013-7481

    Article  CAS  PubMed  Google Scholar 

  24. Calamari L, Petrera F, Bertin G (2010) Effects of either sodium selenite or Se yeast (Sc CNCM I-3060) supplementation on selenium status and milk characteristics in dairy cows. Livest Sci 128(1):154–165

    Article  Google Scholar 

  25. Calamari L, Petrera F, Abeni F, Bertin G (2011) Metabolic and hematological profiles in heat stressed lactating dairy cows fed diets supplemented with different selenium sources and doses. Livest Sci 142(1–3):128–137

    Article  Google Scholar 

  26. Ceballosmarquez A, Barkema HW, Stryhn H, Wichtel J, Neumann J, Mella A, Kruze J, Espindola MS, Wittwer F (2010) The effect of selenium supplementation before calving on early-lactation udder health in pastured dairy heifers. J Dairy Sci 93(10):4602–4612. https://doi.org/10.3168/jds.2010-3086

    Article  CAS  Google Scholar 

  27. AOAC (2000) Offical methods of analysis. 17th edn. Association of Official Analytical Chemists, Arlington, VA, USA

  28. Van Soest PJ, Robertson JB, Lewis BA (1991) Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J Dairy Sci 74(10):3583–3597

    Article  Google Scholar 

  29. Gong J, Ni L, Wang D, Shi B, Yan S (2014) Effect of dietary organic selenium on milk selenium concentration and antioxidant and immune status in midlactation dairy cows. Livest Sci 170:84–90

    Article  Google Scholar 

  30. Gong J, Xiao M (2016) Selenium and antioxidant status in dairy cows at different stages of lactation. Biol Trace Elem Res 171(1):89–93. https://doi.org/10.1007/s12011-015-0513-2

    Article  CAS  PubMed  Google Scholar 

  31. Pavlata L, Pechova A, Illek J (2000) Direct and indirect assessment of selenium status in cattle—a comparison. Acta Vet Brno 69(4):281–287

    Article  CAS  Google Scholar 

  32. Pilarczyk B, Jankowiak D, Tomzamarciniak A, Pilarczyk R, Sablik P, Drozd R, Tylkowska A, Skolmowska M (2012) Selenium concentration and glutathione peroxidase (GSH-Px) activity in serum of cows at different stages of lactation. Biol Trace Elem Res 147:91–96. https://doi.org/10.1007/s12011-011-9271-y

    Article  CAS  PubMed  Google Scholar 

  33. Slavik P, Illek J, Rajmon R, Zelený T, Jilek F (2008) Selenium dynamics in the blood of beef cows and calves fed diets supplemented with organic and inorganic selenium sources and the effect on their reproduction. Acta Vet Brno 77(1):11–15

    Article  CAS  Google Scholar 

  34. Gunter SA, Beck PA, Phillips JM (2003) Effects of supplementary selenium source on the performance and blood measurements in beef cows and their calves. J Anim Sci 81(4):856–864. https://doi.org/10.2527/2003.814856x

    Article  CAS  PubMed  Google Scholar 

  35. Abdelrahman MM, Kincaid RL (1995) Effect of selenium supplementation of cows on maternal transfer of selenium to fetal and newborn calves. J Dairy Sci 78(3):625–630

    Article  CAS  Google Scholar 

  36. Pavlata L, Prasek J, Podhorský A, Pechova A, Haloun T (2003) Selenium metabolism in cattle: maternal transfer of selenium to newborn calves at different selenium concentrations in dams. Acta Vet Brno 72(4):639–646

    Article  CAS  Google Scholar 

  37. Koenig KM, Beauchemin KA (2009) Supplementing selenium yeast to diets with adequate concentrations of selenium: selenium status, thyroid hormone concentrations and passive transfer of immunoglobulins in dairy cows and calves. Can J Anim Sci 89(1):111–122

    Article  CAS  Google Scholar 

  38. Meglia GE, Johannisson A, Petersson LG, Waller KP (2001) Changes in some blood micronutrients, leukocytes and neutrophil expression of adhesion molecules in Periparturient dairy cows. Acta Vet Scand 42(1):139–150

    Article  CAS  Google Scholar 

  39. Halliwell B, Chirico S (1993) Lipid peroxidation: its mechanism, measurement, and significance. Am J Clin Nutr 57(5 Suppl):715S–724S

    Article  CAS  Google Scholar 

  40. Bernabucci U, Ronchi B, Lacetera N, Nardone A (2005) Influence of body condition score on relationships between metabolic status and oxidative stress in periparturient dairy cows. J Dairy Sci 88(6):2017–2026. https://doi.org/10.3168/jds.S0022-0302(05)72878-2

    Article  CAS  PubMed  Google Scholar 

  41. Abuelo A, Hernández J, Benedito JL, Castillo C (2013) Oxidative stress index (OSi) as a new tool to assess redox status in dairy cattle during the transition period. Animal 7(8):1374–1378. https://doi.org/10.1017/S1751731113000396

    Article  CAS  PubMed  Google Scholar 

  42. Abuelo A, Hernandez J, Benedito JL, Castillo C (2016) Association of oxidative status and insulin sensitivity in periparturient dairy cattle: an observational study. J Anim Physiol Anim Nutr (Berl) 100(2):279–286. https://doi.org/10.1111/jpn.12365

    Article  CAS  Google Scholar 

  43. Konvicna J, Vargova M, Paulikova I, Kovac G, Kostecka Z (2015) Oxidative stress and antioxidant status in dairy cows during prepartal and postpartal periods. Acta Vet Brno 84(2):133–140

    Article  Google Scholar 

  44. Sharma N, Singh NK, Singh OP, Pandey V, Verma PK (2011) Oxidative stress and antioxidant status during transition period in dairy cows. Asian-Australas J Anim Sci 24(4):479–484

    Article  CAS  Google Scholar 

  45. Spears JW, Weiss WP (2008) Role of antioxidants and trace elements in health and immunity of transition dairy cows. Vet J 176(1):70–76. https://doi.org/10.1016/j.tvjl.2007.12.015

    Article  CAS  PubMed  Google Scholar 

  46. Gaal T, Ribiczeyneszabo P, Stadler K, Jakus J, Reiczigel J, Kover P, Mezes M, Sumeghy L (2006) Free radicals, lipid peroxidation and the antioxidant system in the blood of cows and newborn calves around calving. Comp Biochem Physiol B 143(4):391–396. https://doi.org/10.1016/j.cbpb.2005.12.014

    Article  CAS  PubMed  Google Scholar 

  47. FeşTilă I, MireşAn V, RăDucu C, Cocan D, Constantinescu R, Coroian A (2013) Evaluation of oxidative stress in dairy cows through antioxidant enzymes glutathione peroxidase (GPX) and superoxide dismutase (SOD). Bull Univ Agric Sci Vet 69:107–110

    Google Scholar 

  48. Aggarwal A, Ashutosh, Chandra G, Singh AK (2012) Heat shock protein 70, oxidative stress, and antioxidant status in periparturient crossbred cows supplemented with α-tocopherol acetate. Trop Anim Health Prod 45 (1):239–245. doi:https://doi.org/10.1007/s11250-012-0196-z

    Article  Google Scholar 

  49. Stefanon B, Sgorlon S, Gabai G (2005) Usefulness of nutraceutics in controlling oxidative stress in dairy cows around parturition. Vet Res Commun 29(2):387–390. https://doi.org/10.1007/s11259-005-0088-z

    Article  PubMed  Google Scholar 

  50. Niki E, Traber MG (2012) A history of vitamin E. Ann Nutr Metab 61(3):207–212

    Article  CAS  Google Scholar 

  51. Weiss WP, Hogan JS, Smith KL, Hoblet KH (1990) Relationships among selenium, vitamin E, and mammary gland health in commercial dairy herds. J Dairy Sci 73(2):381–390

    Article  CAS  Google Scholar 

  52. Meglia GE, Jensen SK, Lauridsen C, Persson WK (2006) Alpha-tocopherol concentration and stereoisomer composition in plasma and milk from dairy cows fed natural or synthetic vitamin E around calving. J Dairy Res 73(2):227–234. https://doi.org/10.1017/S0022029906001701

    Article  CAS  PubMed  Google Scholar 

  53. Weiss WP, Hogan JS, Wyatt DJ (2009) Relative bioavailability of all-rac and RRR vitamin E based on neutrophil function and total alpha-tocopherol and isomer concentrations in periparturient dairy cows and their calves. J Dairy Sci 92(2):720–731. https://doi.org/10.3168/jds.2008-1635

    Article  CAS  PubMed  Google Scholar 

  54. Qu Y, Fadden AN, Traber MG, Bobe G (2014) Potential risk indicators of retained placenta and other diseases in multiparous cows. J Dairy Sci 97(7):4151–4165. https://doi.org/10.3168/jds.2013-7154

    Article  CAS  PubMed  Google Scholar 

  55. Politis I (2012) Reevaluation of vitamin E supplementation of dairy cows: bioavailability, animal health and milk quality. Animal 6(9):1427–1434. https://doi.org/10.1017/S1751731112000225

    Article  CAS  PubMed  Google Scholar 

  56. Weiss WP, Hogan JS (2005) Effect of selenium source on selenium status, neutrophil function, and response to Intramammary endotoxin challenge of dairy cows. J Dairy Sci 88(12):4366–4374

    Article  CAS  Google Scholar 

  57. Celi P (2011) Biomarkers of oxidative stress in ruminant medicine. Immunopharmacol Immunotoxicol 33(2):233–240. https://doi.org/10.3109/08923973.2010.514917

    Article  PubMed  Google Scholar 

Download references

Funding

This research was funded by National Natural Science Foundation of China (Project No. 31560644) and Natural Science Foundation of Inner Mongolia, China (Project No. 2015MS0367).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Gong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, J., Xiao, M. Effect of Organic Selenium Supplementation on Selenium Status, Oxidative Stress, and Antioxidant Status in Selenium-Adequate Dairy Cows During the Periparturient Period. Biol Trace Elem Res 186, 430–440 (2018). https://doi.org/10.1007/s12011-018-1323-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-018-1323-0

Keywords

Navigation