Skip to main content
Log in

Mercuric Chloride Induced Ovarian Oxidative Stress by Suppressing Nrf2-Keap1 Signal Pathway and its Downstream Genes in Laying Hens

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The present study evaluated the effects of mercury chloride (HgCl2) on follicular atresia rate, sex hormone secretion, and ovarian oxidative stress in laying hens. Antioxidant enzyme genes and the nuclear factor erythroid 2-related factor 2 (Nrf2)-Kelch-like ECH-associated protein 1 (Keap1) signal pathway were further studied to uncover the molecular mechanism. A total of 768 40-week-old Hy-Line Brown laying hens were randomly allocated to four treatments with eight pens per treatment and 24 hens of each pen. The birds were fed with four experimental diets containing graded levels of mercury (Hg) at 0.280, 3.325, 9.415, and 27.240 mg/kg, respectively. Results revealed that a positive relationship occurred between the accumulation of Hg in ovary and follicular atresia rate. Progesterone (P4) level significantly decreased in all Hg-treatment groups (P < 0.05), and follicle-stimulating hormone (FSH) and luteinizing hormone (LH) levels were the lowest in the 27.240-mg/kg Hg group. Besides, the activities of catalase (CAT), superoxidative dismutase (SOD), glutathione reductase (GR), and glutathione (GSH) content were significantly decreased in all Hg-treatment groups (P < 0.05). Glutathione peroxidase (GSH-Px) activity significantly decreased, while malondialdehyde (MDA) content sharply increased in the 27.240-mg/kg Hg group (P < 0.05). In addition, there were positive relationships between antioxidant enzyme activities and antioxidant gene expressions or between antioxidant gene expressions and Nrf2 mRNA expression, while negative correlations occurred between Nrf2 and Keap1 at transcription and protein levels. It could be concluded that Hg induced ovarian function disorders and ovarian oxidative stress by means of impairing the Nrf2-Keap1 signal pathway in laying hens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bernard S, Enayati A, Redwood L, Roger H, Binstock T (2001) Autism: a novel form of mercury poisoning. Med Hypotheses 56(4):462–471. https://doi.org/10.1054/mehy.2000.1281

    Article  CAS  PubMed  Google Scholar 

  2. Zahir F, Rizwi SJ, Haq SK, Khan RH (2005) Low dose mercury toxicity and human health. Environ Toxicol Pharmacol 20(2):351–360. https://doi.org/10.1016/j.etap.2005.03.007

    Article  CAS  PubMed  Google Scholar 

  3. Wolf MF, Schwarzbach S, Sulaiman RA (1998) Effects of mercury on wildlife: a comprehensive review. Environ Toxicol Chem 17(2):146–160. https://doi.org/10.1002/etc.56201700203

    Article  Google Scholar 

  4. Davis BJ, Price HC, O’Connor RW, Fernando R, Rowland AS, Morgan DL (2001) Mercury vapor and female reproduction toxicity. Toxicol Sci 59(2):291–296. https://doi.org/10.1093/toxsci/59.2.291

    Article  CAS  PubMed  Google Scholar 

  5. Roopha DP, Latha PC (2013) Cadimum exposure-induced oxidative stress; delay in sexual maturation and impaired hormones in developing rat ovary. Oxid Antioxid Med Sci 2(3):181–186. https://doi.org/10.5455/oams.1007613.or.048

    Article  Google Scholar 

  6. Martínez-Álvarez RM, Morales AE, Sanz A (2005) Antioxidant defenses in fish: biotic and abiotic factors. Rev Fish Biol Fish 15(1):75–88. https://doi.org/10.1007/s11160-005-7846-4

    Article  Google Scholar 

  7. Grotto D, de Castro MM, Barcelos GR, Garcia SC, Barbosa JF (2009) Low level and sub-chronic exposure to methylmercury induces hypertension in rats: nitric oxide depletion and oxidative damage as possible mechanisms. Arch Toxicol 83(7):653–662. https://doi.org/10.1007/s00204-009-0437-8

    Article  CAS  PubMed  Google Scholar 

  8. Wu G, Fang Y, Yang S, Lupton JR, Turner ND (2004) Glutathione metabolism and its implications for health. J Nutr 134(3):489–492

    Article  CAS  PubMed  Google Scholar 

  9. Reiter RJ, Tan DX, Acuna-Castroviejo D (2000) Melatonin: mechanisms and actions as an antioxidant. Curr Top Biophys 24:171–183

    CAS  Google Scholar 

  10. Tiedge M, Lortz S, Drinkgern J, Lenzen S (1997) Relation between antioxidant enzyme gene expression and antioxidative defense status of insulin-producing cells. Diabetes 46(11):1733–1742. https://doi.org/10.2337/diab.46.11.1733

    Article  CAS  PubMed  Google Scholar 

  11. Valko M, Leibfritz D, Moncol J, Cronin MTD, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39(1):44–84. https://doi.org/10.1016/j.biocel.2006.07001

    Article  CAS  PubMed  Google Scholar 

  12. Zhang DD (2006) Mechanistic studies of the Nrf2-Keap1 signaling pathway. Drug Metab Rev 38(4):769–789. https://doi.org/10.1080/03602530600971974

    Article  CAS  PubMed  Google Scholar 

  13. Ni M, Li X, Yin Z, Jiang H, Sidoryk-Węgrzynowicz M, Milatovic D, Cai J, Aschner M (2010) Methylmercury induces acute oxidative stress, altering Nrf2 protein level in primary microglial cells. Toxicol Sci 116(2):590–603. https://doi.org/10.1093/toxsci/kfq126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yang S, Zhang Z, He J, Li J, Zhang J, Xing H, Xu S (2012) Ovarian toxicity induced by dietary cadmium in hen. Biol Trace Elem Res 148(1):53–60. https://doi.org/10.1007/s12011-012-9343-7

    Article  CAS  PubMed  Google Scholar 

  15. Atallah RH, Kalman DA (1993) Selective determination of inorganic mercury and methylmercury in tissues by continuous flow and cold vapor atomic absorption spectrometry. J Anal Toxicol 17(2):87–92. https://doi.org/10.1093/jat/17.2.87

    Article  CAS  PubMed  Google Scholar 

  16. Gupta SK, Gilbert AB, Walker MA (1988) Histological study of follicular atresia in the ovary of the domestic hen (Gallus domesticus). J Reprod Fertil 82(1):219–225. https://doi.org/10.1530/jrf.0.0820219

    Article  CAS  PubMed  Google Scholar 

  17. Janero DR (1990) Malondialdehyde and thiobarbituric acid-reactivity as diagnostic indices of lipid peroxidation and peroxidative tissue injury. Free Radic Biol Med 9(6):515–540. https://doi.org/10.1016/0891-5849(90)90131-2

    Article  CAS  PubMed  Google Scholar 

  18. Abegg MA, Alabarse PVG, Schüller ÁK, Benfato MS (2012) Glutathione levels in and total antioxidant capacity of Candida sp. cells exposed to oxidative stress caused by hydrogen peroxide. Rev Soc Bras Med Trop 45(5):620–626. https://doi.org/10.1590/S0037-86822012000500015

    Article  PubMed  Google Scholar 

  19. Carlberg I, Mannervik B (1985) Glutathione reductase. Methods Enzmol 113:484–490. https://doi.org/10.1016/S0076-6879(85)13062-4

    Article  CAS  Google Scholar 

  20. Sun Y, Oberley LW, Li Y (1988) A simple method for clinical assay of superoxide dismutase. Clin Chem 34(3):497–500

    Article  CAS  PubMed  Google Scholar 

  21. Aebi H (1984) Catalase in vitro. Method Enzymol 105:121–126. https://doi.org/10.1016/S0076-6879(84)05016-3

    Article  CAS  Google Scholar 

  22. Wheeler CR, Salzman JA, Elsayed NM, Omaye ST, Korte DW (1990) Automated assays for superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase activity. Anal Biochem 184(2):193–199. https://doi.org/10.1016/0003-2697(90)90668-Y

    Article  CAS  PubMed  Google Scholar 

  23. Hassanpour H, Khalaji-Pirbalouty V, Nasiri L, Mohebbi A, Bahadoran S (2015) Oxidant and enzymatic antioxidant status (gene expression and activity) in the brain of chickens with cold-induced pulmonary hypertension. Int J Biometeorol 59(11):1615–1621. https://doi.org/10.1007/s00484-015-0968-z

    Article  PubMed  Google Scholar 

  24. Lin XJ, Jiang SQ, Jiang ZY, Zheng C, Gou ZY (2016) Effects of equol on H2O2-induced oxidative stress in primary chickens intestinal epithelial cells. Poult Sci 95(6):1380–1386. https://doi.org/10.3382/ps/pew034

    Article  CAS  PubMed  Google Scholar 

  25. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2 -ΔΔCt method. Methods 25(4):402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  26. Djordjevic J, Djordjevic A, Adzic M, Mitic M, Lukic I, Radojcic MB (2015) Alternations in the Nrf2-Keap1 signaling pathway and its downstream target genes in rat brain under stress. Brain Res 1602:20–31. https://doi.org/10.1016/j.brainres.2015.01.010

    Article  CAS  PubMed  Google Scholar 

  27. Hayes AD, Rothstein A (1962) The metabolism of inhaled mercury vapor in the rat studied by isotope techniques. J Pharmacol Exp Ther 138:1–10

    CAS  PubMed  Google Scholar 

  28. Altunkaynak BZ, Akgül N, Yahyazadeh A, Altunkaynak ME, Turkmen AP, Akgül HM, Ünal B (2016) Effect of mercury vapor inhalation on rat ovary: stereology and histopathology. J Obstet Gynaecol Res 42(4):410–416. https://doi.org/10.1111/jog.12911

    Article  CAS  PubMed  Google Scholar 

  29. Stadnicka A (1980) Localization of mercury in the rat ovary after oral administration of mercuric chloride. Acta Histochem 67(2):227–233. https://doi.org/10.1016/S0065-1218(80)80026-2

    Article  CAS  PubMed  Google Scholar 

  30. Kime DE (1995) The effects of pollution on reproduction in fish. Rev Fish Biol Fish 5(1):52–95. https://doi.org/10.1007/BF01103366

    Article  Google Scholar 

  31. Graham JD, Clarke CL (1997) Physiological action of progesterone in target tissues. Endocr Rev 18(4):502–519. https://doi.org/10.1210/er.18.4.502

    Article  CAS  PubMed  Google Scholar 

  32. Petersen SL, Ottem EN, Carpenter CD (2003) Direct and indirect regulation of gonadotropin-releasing hormone neurons by estradiol. Biol Reprod 69(6):1771–1778. https://doi.org/10.1095/biolreprod.103.019745

    Article  CAS  PubMed  Google Scholar 

  33. Mirzaei M, Razi M, Sadrkhanlou R (2017) Nanosilver particles increase follicular atresia: correlation with oxidative stress and aromatization. Environ Toxicol 32(10):2244–2255. https://doi.org/10.1002/tox.22440

    Article  CAS  PubMed  Google Scholar 

  34. Finkel T, Holbrook NJ (2000) Oxidants, oxidative stress and the biology of aging. Nature 408(6809):239–247. https://doi.org/10.1038/35041687

    Article  CAS  PubMed  Google Scholar 

  35. Zhang QF, Li YW, Liu ZH, Chen QL (2016) Reproductive toxicity of inorganic mercury exposure in adult zebrafish: histological damage, oxidative stress, and alterations of sex hormone and gene expression in the hypothalamic-pituitary-gonadal axis. Aquat Toxicol 177:417–424. https://doi.org/10.1016/j.aquatox.2016.06.018

    Article  CAS  PubMed  Google Scholar 

  36. Morcillo P, Esteban MÁ, Cuesta A (2016) Heavy metals produce toxicity, oxidative stress and apoptosis in the marine teleost fish SAF-1 cell line. Chemosphere 144:225–233. https://doi.org/10.1016/j.chemosphere.2015.08.020

    Article  CAS  PubMed  Google Scholar 

  37. Zeng L, Zheng JL, Wang YH, Xu MY, Zhu AY, Wu CW (2016) The role of Nrf2/Keap1 signaling in inorganic mercury induced oxidative stress in the liver of large yellow croaker Pseudosciaena crocea. Ecotoxicol Environ Saf 132:345–352. https://doi.org/10.1016/j.ecoenv.2016.05.002

    Article  CAS  PubMed  Google Scholar 

  38. Wu P, Jiang WD, Liu Y, Chen GF, Jiang J, Li SH, Feng L, Zhou XQ (2014) Effect of choline on antioxidant defenses and gene expressions of Nrf2 signaling molecule in the spleen and head kidney of juvenile Jian carp (Cyprinus carpio var. Jian). Fish Shellfish Immunol 38(2):374–382. https://doi.org/10.1016/j.fsi.2014.03.032

    Article  CAS  PubMed  Google Scholar 

  39. Li W, Khor TO, Xu C, Shen G, Jeong WS, Yu S, Kong AN (2008) Activation of Nrf2-antioxidant signaling attenuates NF-kappa B-inflammatory response and elicits apoptosis. Biochem Pharmacol 76(11):1485–1489. https://doi.org/10.1016/j.bcp.2008.07.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Itoh K, Tong KI, Yamamoto M (2004) Molecular mechanism activating Nrf2-Keap1 pathway in regulation of adaptive response to electrophiles. Free Radic Biol Med 36(10):1208–1213. https://doi.org/10.1016/j.freeradbiomed.2004.02.075

    Article  CAS  PubMed  Google Scholar 

  41. Toyama T, Shinkai Y, Yasutake A, Uchida K, Yamamoto M, Kumagai Y (2011) Isothiocyanates reduce mercury accumulation via an Nrf2-dependent mechanism during exposure of mice to methylmercury. Environ Health Perspect 119(8):1117–1122. https://doi.org/10.1289/ehp.1003123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kim HJ, Vaziri ND (2010) Contribution of impaired Nrf2-Keap1 pathway to oxidative stress and inflammation in chronic renal failure. Am J Physiol Renal Physiol 298(3):F662–F671. https://doi.org/10.1152/ajprenal.00421.2009

    Article  CAS  PubMed  Google Scholar 

  43. Shanmugam T, Selvaraj M, Poomalai S (2016) Epigallocatechin gallate potentially abrogates fluoride induced lung oxidative stress, inflammation via Nrf2/Keap1 signaling pathway in rats: an in-vivo and in-silico study. Int Immunopharmacol 39:128–139. https://doi.org/10.1016/j.intimp.2016.07.022

    Article  CAS  PubMed  Google Scholar 

  44. Kensler TW, Wakabayashi N, Biswal S (2007) Cell survival responses to environmental stress via the Keap1-Nrf2-ARE pathway. Annu Rev Pharmacol Toxicol 47(1):89–116. https://doi.org/10.1146/annurev.pharmtox.46.120604.141046

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the Modern Argo-industry Technology Research System of China (CARS-40-K10) and the National Key Technology R&D Program (204BAD13B04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoting Zou.

Ethics declarations

The experiment was carried out according to the Guiding Principles in the Use of Animals in Toxicology, adopted by the Chinese Society of Toxicology. The animal procedures were approved by the Animal Ethics Committee of Zhejiang University (Hangzhou, China).

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOCX 31 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Y., Zhu, M., Miao, L. et al. Mercuric Chloride Induced Ovarian Oxidative Stress by Suppressing Nrf2-Keap1 Signal Pathway and its Downstream Genes in Laying Hens. Biol Trace Elem Res 185, 185–196 (2018). https://doi.org/10.1007/s12011-018-1244-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-018-1244-y

Keywords

Navigation