Skip to main content
Log in

The Molecular Mechanisms of Protective Role of Se on the G2/M Phase Arrest of Jejunum Caused by AFB1

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Aflatoxin B1 (AFB1) is the most toxic among the mycotoxins and causes detrimental health effects on human and animals. Selenium (Se) plays an important role in chemopreventive, antioxidant, anticarcinogen, and detoxification and involved in cell cycle regulation. The aim of this study was to explore the molecular mechanisms of selenium involved in inhibition of G2/M cell cycle arrest of broiler’s jejunum. A total of 240 one-day-old healthy Cobb broilers were randomly divided into four groups and fed with basal diet (control group), 0.6 mg/kg AFB1 (AFB1 group), 0.4 mg/kg Se (+Se group), and 0.6 mg/kg AFB1 + 0.4 mg/kg Se (AFB1 + Se group) for 21 days, respectively. The histological observation and morphological analysis revealed that 0.4 mg/kg Se prevented the AFB1-associated lesions of jejunum including the shedding of the apical region of villi, the decreased villus height, and villus height/crypt ratio. The cell cycle analysis by flow cytometry showed that 0.4 mg/kg Se ameliorated the AFB1-induced G2/M phase arrest in jejunal cells. Moreover, the expressions of ATM, Chk2, p53, Mdm2, p21, PCNA, Cdc25, cyclin B, and Cdc2 analyzed by immunohistochemistry and qRT-PCR demonstrated that 0.4 mg/kg Se restored these parameters to be close to those in the control group. In conclusion, Se promoted cell cycle recovery from the AFB1-induced G2/M phase arrest by the molecular regulation of ATM pathway in the jejunum of broilers. The outcomes from the present study may lead to a better understanding of the nature of selenium’s essentiality and its protective roles against AFB1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Liu R, Jin Q, Huang J, Liu Y, Wang X, Zhou X, Mao W, Wang S (2012) In vitro toxicity of aflatoxin B1 and its photodegradation products in HepG2 cells. J Appl Toxicol 32(4):276–281

    Article  CAS  PubMed  Google Scholar 

  2. Rawal S, Kim JE, Coulombe R (2010) Aflatoxin B1 in poultry: toxicology, metabolism and prevention. Res Vet Sci 89(3):325–331

    Article  CAS  PubMed  Google Scholar 

  3. Fink-Gremmels J (2008) The role of mycotoxins in the health and performance of dairy cows. The Vet J 176(1):84–92

    Article  CAS  PubMed  Google Scholar 

  4. Richard JL (2007) Some major mycotoxins and their mycotoxicoses—an overview. Int J Food Microbiol 119(1):3–10

    Article  CAS  PubMed  Google Scholar 

  5. Bedard LL, Massey TE (2006) Aflatoxin B1-induced DNA damage and its repair. Cancer Lett 241(2):174–183

    Article  CAS  PubMed  Google Scholar 

  6. Agar G, Alpsoy L, Bozari S, Erturk FA, Yildirim N (2013) Determination of protective role of selenium against aflatoxin B1-induced DNA damage. Toxicol Ind Health 29(5):396–403

    Article  PubMed  Google Scholar 

  7. Cancer IAfRo and Organization WH (1993) Some naturally occurring substances: food items and constituents, heterocyclic aromatic amines and mycotoxins. International Agency for Research on Cancer.

  8. Hartwell LH, Kastan MB (1994) Cell cycle control and cancer. Science 266(5192):1821–1828

    Article  CAS  PubMed  Google Scholar 

  9. Schafer K (1998) The cell cycle: a review. Vet Pathol 35(6):461–478

    Article  CAS  PubMed  Google Scholar 

  10. Weinert T, Hartwell LH (1988) The RAD9 gene controls the cell cycle response to DNA damage in Saccharomyces cerevisiae. Science 241(4863):317–322

    Article  CAS  PubMed  Google Scholar 

  11. Bbosa GS, Lubega A, Kyegombe DB, Kitya D, Ogwal-Okeng J and Anokbonggo WW (2013) Review of the biological and health effects of aflatoxins on body organs and body systems

  12. Yu Z, Wang F, Liang N, Wang C, Peng X, Fang J, Cui H, Mughal MJ, Lai W (2015) Effect of selenium supplementation on apoptosis and cell cycle blockage of renal cells in broilers fed a diet containing aflatoxin B1. Biol Trace Elem Res 168(1):242–251

    Article  CAS  PubMed  Google Scholar 

  13. Yin H, Jiang M, Peng X, Cui H, Zhou Y, He M, Zuo Z, Ouyang P, Fan J, Fang J (2016) The molecular mechanism of G2M cell cycle arrest induced by AFB1 in the jejunum. Oncotarget 7(24):35592–35607

    Article  PubMed  PubMed Central  Google Scholar 

  14. Scott TR, Rowland SM, Rodgers RS, Bodine AB (1991) Genetic selection for aflatoxin B1 resistance influences chicken T-cell and thymocyte proliferation. D Dev Comp Immunol 15(4):383–391

    Article  CAS  Google Scholar 

  15. Bahari A, Mehrzad J, Mahmoudi M, Bassami MR, Dehghani H (2014) Cytochrome P450 isoforms are differently up-regulated in aflatoxin B1-exposed human lymphocytes and monocytes. Immunopharm Immun 36(1):1–10

    Article  CAS  Google Scholar 

  16. Bianco G, Russo R, Marzocco S, Velotto S, Autore G, Severino L (2012) Modulation of macrophage activity by aflatoxins B1 and B2 and their metabolites aflatoxins M1 and M2. Toxicon 59(6):644–650

    Article  CAS  PubMed  Google Scholar 

  17. Raj HG, Gupta K, Rohil V, Bose M, Biswas G, Singh SK, Jain SC, Parmar VS, Olsen CE, Wengel J (1998) Aflatoxin B1-induced micronuclei and cell cycle alterations in lung and bone marrow cells and their modulation by Piper argyrophyllum extract. Teratogen Carcin Mut 18(5):249–261

    Article  CAS  Google Scholar 

  18. Yang X, Zhang Z, Wang X, Wang Y, Zhang X, Lu H, Wang S-L (2013) Cytochrome P450 2A13 enhances the sensitivity of human bronchial epithelial cells to aflatoxin B1-induced DNA damage. Toxicol Appl Pharmacol 270(2):114–121

    Article  CAS  PubMed  Google Scholar 

  19. Milner JA (1985) Effect of selenium on virally induced and transplantable tumor models. Fed Proc 44(9):2568–2572

    CAS  PubMed  Google Scholar 

  20. Zeng H (2002) Selenite and selenomethionine promote HL-60 cell cycle progression. J Nutr 132(4):674–679

    CAS  PubMed  Google Scholar 

  21. Ip C, Thompson HJ, Ganther HE (2000) Selenium modulation of cell proliferation and cell cycle biomarkers in normal and premalignant cells of the rat mammary gland. Cancer Epidem Biomar 9(1):49–54

    CAS  Google Scholar 

  22. Peng X, Cui Y, Cui W, Deng J, Cui H, Yang F (2011) The cell cycle arrest and apoptosis of bursa of Fabricius induced by low selenium in chickens. Biol Trace Elem Res 139(1):32–40

    Article  CAS  PubMed  Google Scholar 

  23. Sinha R, Said T, Medina D (1996) Organic and inorganic selenium compounds inhibit mouse mammary cell growth in vitro by different cellular pathways. Cancer Lett 107(2):277–284

    Article  CAS  PubMed  Google Scholar 

  24. Zeng H (2009) Selenium as an essential micronutrient: roles in cell cycle and apoptosis. Molecules 14(3):1263–1278

    Article  CAS  PubMed  Google Scholar 

  25. Yeh J, Cheng L-c, Liang Y-C, Ou BR (2003) Modulation of the arsenic effects on cytotoxicity, viability, and cell cycle in porcine endothelial cells by selenium. Endothelium 10(3):127–139

    Article  CAS  PubMed  Google Scholar 

  26. Zhang S, Peng X, Fang J, Cui H, Zuo Z, Chen Z (2014) Effects of aflatoxin B1 exposure and sodium selenite supplementation on the histology, cell proliferation, and cell cycle of jejunum in broilers. Biol Trace Elem Res 160(1):32–40

    Article  CAS  PubMed  Google Scholar 

  27. Choct M (2009) Managing gut health through nutrition. Br Poult Sci 50(1):9–15

    Article  CAS  PubMed  Google Scholar 

  28. Kaoud H (2013) Innovative methods for the amelioration of aflatoxin (afb1) effect in broiler chicks. Sjar Net 1

  29. Peng X, Yu Z, Liang N, Chi X, Li X, Jiang M, Fang J, Cui H, Lai W, Zhou Y (2016) The mitochondrial and death receptor pathways involved in the thymocytes apoptosis induced by aflatoxin B1. Oncotarget 7(11):12222–12234

    Article  PubMed  PubMed Central  Google Scholar 

  30. Dale N (1994) National Research Council Nutrient Requirements of Poultry–Ninth Revised Edition (1994). J Appl Poult Res 3(1):101–101

    Article  Google Scholar 

  31. Fang J, Cui H, Peng X, Chen Z, He M, Tang L (2011) Developmental changes in cell proliferation and apoptosis in the normal duck thymus. Anat Histol Embryol 40(6):457–465

    Article  CAS  PubMed  Google Scholar 

  32. Wu B, Cui H, Peng X, Fang J, Zuo Z, Deng J, Huang J (2014) Dietary nickel chloride induces oxidative stress, apoptosis and alters Bax/Bcl-2 and caspase-3 mRNA expression in the cecal tonsil of broilers. Food Chem Toxicol 63:18–29

    Article  CAS  PubMed  Google Scholar 

  33. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods 25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  34. Dorado RD, Porta EA, Aquino TM (1985) Effects of dietary selenium on hepatic and renal tumorigenesis induced in rats by diethylnitrosamine. Hepatology 5(6):1201–1208

    Article  CAS  PubMed  Google Scholar 

  35. Combs G, Clark L, Turnbull B (2001) An analysis of cancer prevention by selenium. Biofactors 14(1–4):153–159

    Article  CAS  PubMed  Google Scholar 

  36. Allan CB, Lacourciere GM, Stadtman TC (1999) Responsiveness of selenoproteins to dietary selenium 1, 2. Annu Rev Nutr 19(1):1–16

    Article  CAS  PubMed  Google Scholar 

  37. Hao S, Hu J, Song S, Huang D, Xu H, Qian G, Gan F, Huang K (2016) Selenium alleviates aflatoxin B1-induced immune toxicity through improving glutathione peroxidase 1 and selenoprotein S expression in primary porcine splenocytes. J Agric Food Chem 64(6):1385–1393

    Article  CAS  PubMed  Google Scholar 

  38. Chen K, Shu G, Peng X, Fang J, Cui H, Chen J, Wang F, Chen Z, Zuo Z, Deng J (2013) Protective role of sodium selenite on histopathological lesions, decreased T-cell subsets and increased apoptosis of thymus in broilers intoxicated with aflatoxin B1. Food Chem Toxicol 59:446–454

    Article  CAS  PubMed  Google Scholar 

  39. Wang F, Shu G, Peng X, Fang J, Chen K, Cui H, Chen Z, Zuo Z, Deng J, Geng Y (2013) Protective effects of sodium selenite against aflatoxin B1-induced oxidative stress and apoptosis in broiler spleen. Inter J Env Res Pub Heal 10(7):2834–2844

    Article  CAS  Google Scholar 

  40. Yang H, Jing F, Xi P, Cui H, Zuo Z (2014) Effects of sodium selenite on aflatoxin B1-induced decrease of ileac T cell and the mRNA contents of IL-2, IL-6, and TNF-α in broilers. Biol Trace Elem Res 159(1):167–173

    Google Scholar 

  41. Shi D, Guo S, Liao S, Su R, Pan J, Lin Y, Tang Z (2012) Influence of selenium on hepatic mitochondrial antioxidant capacity in ducklings intoxicated with aflatoxin B1. Biol Trace Elem Res 145(3):325–329

    Article  CAS  PubMed  Google Scholar 

  42. Chen K, Jing F, Xi P, Cui H, Jin C, Wang F, Chen Z, Zuo Z, Deng J, Lai W (2014) Effect of selenium supplementation on aflatoxin B1-induced histopathological lesions and apoptosis in bursa of Fabricius in broilers. Food Chem Toxicol 74(74):91–97

    Article  CAS  PubMed  Google Scholar 

  43. Verma RJ (2003) Aflatoxin cause DNA damage. Inter J of Hum Genet 4(4)

  44. Banin S, Moyal L, Shieh S-Y, Taya Y, Anderson C, Chessa L, Smorodinsky N, Prives C, Reiss Y, Shiloh Y (1998) Enhanced phosphorylation of p53 by ATM in response to DNA damage. Science 281(5383):1674–1677

    Article  CAS  PubMed  Google Scholar 

  45. Wilson KA, Stern DF (2008) NFBD1/MDC1, 53BP1 and BRCA1 have both redundant and unique roles in the ATM pathway. Cell Cycle 7(22):3584–3594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hirao A, Kong Y-Y, Matsuoka S, Wakeham A, Ruland J, Yoshida H, Liu D, Elledge SJ, Mak TW (2000) DNA damage-induced activation of p53 by the checkpoint kinase Chk2. Science 287(5459):1824–1827

    Article  CAS  PubMed  Google Scholar 

  47. Yu Q, La Rose J, Zhang H, Takemura H, Kohn KW, Pommier Y (2002) UCN-01 inhibits p53 up-regulation and abrogates γ-radiation-induced G2-M checkpoint independently of p53 by targeting both of the checkpoint kinases, Chk2 and Chk1. Cancer Res 62(20):5743–5748

    CAS  PubMed  Google Scholar 

  48. Piette J, Neel H, Marechal V (1997) Mdm2: keeping p53 under control. Oncogene 15(9):1001–1010

    Article  CAS  PubMed  Google Scholar 

  49. Agarwal ML, Agarwal A, Taylor WR, Stark GR (1995) p53 controls both the G2/M and the G1 cell cycle checkpoints and mediates reversible growth arrest in human fibroblasts. P Natl Acad Sci 92(18):8493–8497

    Article  CAS  Google Scholar 

  50. Dash BC, Eldeiry WS (2005) Phosphorylation of p21 in G2/M promotes cyclin B-Cdc2 kinase activity. Mol Cell Biol 25(8):3364–3387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Eldeiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM, Lin D, Mercer WE, Kinzler KW, Vogelstein B (1993) WAF1, a potential mediator of p53 tumor suppression. Cell 75(4):817–825

    Article  CAS  Google Scholar 

  52. Ando T, Kawabe T, Ohara H, Ducommun B, Itoh M, Okamoto T (2001) Involvement of the interaction between p21 and proliferating cell nuclear antigen for the maintenance of G2/M arrest after DNA damage. J Biol Chem 276(46):42971–42977

    Article  CAS  PubMed  Google Scholar 

  53. Zhang H, Xiong Y, Beach D (1993) Proliferating cell nuclear antigen and p21 are components of multiple cell cycle kinase complexes. Mol Biol Cell 4(9):897–906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kelman Z (1997) PCNA: structure, functions and interactions. Oncogene 14(6)

  55. Maga G, Hübscher U (2003) Proliferating cell nuclear antigen (PCNA): a dancer with many partners. J Cell Sci 116(15):3051–3060

    Article  CAS  PubMed  Google Scholar 

  56. Bravo R, Frank R, Blundell PA and Macdonald-Bravo H (1987) Cyclin/PCNA is the auxiliary protein of DNA polymerase-δ

  57. Quaas M, Müller GA, Engeland K (2012) p53 can repress transcription of cell cycle genes through a p21WAF1/CIP1-dependent switch from MMB to DREAM protein complex binding at CHR promoter elements. Cell Cycle 11(24):4661–4672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Poluha W, Poluha DK, Chang B, Crosbie NE, Schonhoff CM, Kilpatrick DL, Ross AH (1996) The cyclin-dependent kinase inhibitor p21 (WAF1) is required for survival of differentiating neuroblastoma cells. Mol Cell Biol 16(4):1335–1341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kaushal N, Bansal MP (2007) Dietary selenium variation-induced oxidative stress modulates CDC2/cyclin B1 expression and apoptosis of germ cells in mice testis. J Nutr Biochem 18(8):553–564

    Article  CAS  PubMed  Google Scholar 

  60. Kaushal N, Bansal MP (2007) Inhibition of CDC2/cyclin B1 in response to selenium-induced oxidative stress during spermatogenesis: potential role of Cdc25c and p21. Mol Cell Biochem 298(1–2):139–150

    Article  CAS  PubMed  Google Scholar 

  61. Nilsson I, Hoffmann I (2000) Cell cycle regulation by the Cdc25 phosphatase family. Prog Cell Cycle Res 4:107–114

    Article  CAS  PubMed  Google Scholar 

  62. Lew DJ, Kornbluth S (1996) Regulatory roles of cyclin dependent kinase phosphorylation in cell cycle control. Curr Opin Cell Biol 8(6):795–804

    Article  CAS  PubMed  Google Scholar 

  63. Coleman TR, Dunphy WG (1995) Cdc2 regulatory factors. Curr Opin Cell Biol 6(6):877–882

    Article  Google Scholar 

  64. Nigg EA (2001) Mitotic kinases as regulators of cell division and its checkpoints. Nat Rev Mol Cell Bio 2(1):21–32

    Article  CAS  Google Scholar 

  65. Bartek J, Lukas J (2003) Chk1 and Chk2 kinases in checkpoint control and cancer. Cancer Cell 3(5):421–429

    Article  CAS  PubMed  Google Scholar 

  66. Yong HP, Jeon YH, Kim IY (2012) Selenoprotein W promotes cell cycle recovery from G2 arrest through the activation of CDC25B. Biochim Biophys Acta 1823(12):2217–2226

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the program for Changjiang Scholars and University Innovative Research Team (PCSIRT) (No. 0848) and the Education Department of Sichuan Province (2012FZ0066) and (2013FZ0072).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xi Peng or Zhicai Zuo.

Ethics declarations

The use of broilers and all experimental procedures involving animals were approved by Sichuan Agricultural University Animal Care and Use Committee. Nutritional requirements were adequate according to National Research Council (1994) (National Research Council, 1994) [30] and Chinese Feeding Standard of Chicken (NY/T33-2004).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, J., Yin, H., Zheng, Z. et al. The Molecular Mechanisms of Protective Role of Se on the G2/M Phase Arrest of Jejunum Caused by AFB1 . Biol Trace Elem Res 181, 142–153 (2018). https://doi.org/10.1007/s12011-017-1030-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-017-1030-2

Keywords

Navigation