Skip to main content
Log in

Combination of DFP and Taurine Counteracts the Aluminum-Induced Alterations in Oxidative Stress and ATPase in Cortex and Blood of Rats

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The study investigated the combined effect of 1,2-dimethyl-3-hydroxypyrid-4-one (DFP) and taurine on aluminum (Al) toxicity in cortex and blood of rats. The control group received 1 ml/kg/day saline solution for 8 weeks. Other animals were exposed to Al at a dose of 281.40 mg/kg/day orally for 4 weeks. Then, they were administered with 1 ml/kg/day saline solution, 400 mg/(kg·day) taurine, 13.82 mg/(kg·day) DFP, 27.44 mg/(kg·day) DFP, 400 mg/(kg·day) taurine +13.82 mg/(kg·day) DFP, and 400 mg/(kg·day) taurine +27.44 mg/(kg·day) DFP for 4 weeks. The changes in markers of oxidative stress, activities of antioxidant enzymes, and triphosphatase (ATPase) in the cortex and blood were determined. Administration of Al led to significant increase in the malondialdehyde (MDA) level and decrease in the activities of antioxidant enzymes, Na+K+-ATPase, Mg2+-ATPase, and Ca2+-ATPase in the cortex and blood, compared with the control group. DFP was observed to reverse alteration of these parameters except for Ca2+-ATPase activity. Treatment with taurine caused significant increase of GSH-Px activity and decrease of the MDA level in the cortex and serum and rise of Na+K+-ATPase in the blood. Effects of DFP combined with taurine were investigated and found to provide a more significant benefit than either drug alone. Combined intake of taurine and DFP could achieve an optimum effect of therapy for Al exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kumar V, Gill KD (2009) Aluminium neurotoxicity: neurobehavioural and oxidative aspects. Arch Toxicol 83(11):965–978. doi:10.1007/s00204-009-0455-6

    Article  CAS  PubMed  Google Scholar 

  2. Good PF, Olanow CW, Perl DP (1992) Neuromelanin-containing neurons of the substantia nigra accumulate iron and aluminum in Parkinson’s disease: a LAMMA study. Brain Res 593(2):343–346. doi:10.1016/0006-8993(92)91334-B

    Article  CAS  PubMed  Google Scholar 

  3. Roskams AJ, Connor JR (1990) Aluminum access to the brain: a role for transferrin and its receptor. Proc Natl Acad Sci U S A 87(22):9024–9027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Walton JR (2013) Aluminum involvement in the progression of Alzheimer’s disease. J Alzheimers Dis 35(1):7–43. doi:10.3233/JAD-121909

    CAS  PubMed  Google Scholar 

  5. Sánchez-Iglesias S, Méndez-Álvarez E, Iglesias-González J, Muñoz-Patiño A, Sánchez-Sellero I, Labandeira-García JL, Soto-Otero R (2009) Brain oxidative stress and selective behaviour of aluminium in specific areas of rat brain: potential effects in a 6-OHDA-induced model of Parkinson’s disease. J Neurochem 109(3):879–888. doi:10.1111/j.1471-4159.2009.06019.x

    Article  PubMed  Google Scholar 

  6. Becaria A, Campbell AC, Bondy SC (2002) Aluminum as a toxicant. Toxicol Ind Health 18(7):309–320

    Article  CAS  PubMed  Google Scholar 

  7. Kumar V, Gill KD (2014) Oxidative stress and mitochondrial dysfunction in aluminium neurotoxicity and its amelioration: a review. Neurotoxicology 41:154–166. doi:10.1016/j.neuro.2014.02.004

    Article  CAS  PubMed  Google Scholar 

  8. Allagui MS, Feriani A, Saoudi M, Badraoui R, Bouoni Z, Nciri R, Murat JC, Elfeki A (2014) Effects of melatonin on aluminium-induced neurobehavioral and neurochemical changes in aging rats. Food Chem Toxicol 70:84–93. doi:10.1016/j.fct.2014.03.043

    Article  CAS  PubMed  Google Scholar 

  9. Al-Olayan EM, El-Khadragy MF, Abdel Moneim AE (2015) The protective properties of melatonin against aluminium-induced neuronal injury. Int J Exp Pathol. doi:10.1111/iep.12122

    PubMed  PubMed Central  Google Scholar 

  10. El-Sayed WM, Al-Kahtani MA, Abdel-Moneim AM (2011) Prophylactic and therapeutic effects of taurine against aluminum-induced acute hepatotoxicity in mice. J Hazard Mater 192(2):880–886. doi:10.1016/j.jhazmat.2011.05.100

    Article  CAS  PubMed  Google Scholar 

  11. Silva VS, Goncalves PP (2014) Effect of lysine acetylsalicylate on aluminium accumulation and (Na/K)ATPase activity in rat brain cortex synaptosomes after aluminium ingestion. Toxicol Lett 232(1):167–174. doi:10.1016/j.toxlet.2014.10.014

    Article  PubMed  Google Scholar 

  12. Singla N, Dhawan DK (2014) Influence of zinc on calcium-dependent signal transduction pathways during aluminium-induced neurodegeneration. Mol Neurobiol 50(2):613–625. doi:10.1007/s12035-014-8643-7

    Article  CAS  PubMed  Google Scholar 

  13. Blanuša M, Prester L, Varnai VM, Pavlović D, Kostial K, Jones MM, Singh PK (2000) Chelation of aluminium by combining DFO and L1 in rats. Toxicology 147(3):151–156. doi:10.1016/S0300-483X(00)00214-6

    Article  PubMed  Google Scholar 

  14. Nittynen LNM, Korpela R, Vapaatalo H (1999) Role of arginine, taurine and homocysteine in cardiovascular diseases. Ann Med 31(5):318–326. doi:10.7666/d.y1272502

    Article  CAS  PubMed  Google Scholar 

  15. Huxtable RJ (1992) Physiological actions of taurine. Physiol Rev 72(1):101–163

    CAS  PubMed  Google Scholar 

  16. Sinha M, Manna P, Sil PC (2009) Induction of necrosis in cadmium-induced hepatic oxidative stress and its prevention by the prophylactic properties of taurine. J Trace Elem Med Biol 23(4):300–313. doi:10.1016/j.jtemb.2009.03.010

    Article  CAS  PubMed  Google Scholar 

  17. Patrick L (2006) Lead toxicity part II: the role of free radical damage and the use of antioxidants in the pathology and treatment of lead toxicity. Altern Med Rev 11(2):114–127

    PubMed  Google Scholar 

  18. Boşgelmez İİ, Söylemezoğlu T, Güvendik G (2008) The protective and antidotal effects of taurine on hexavalent chromium-induced oxidative stress in mice liver tissue. Biol Trace Elem Res 125(1):46–58. doi:10.1007/s12011-008-8154-3

    Article  PubMed  Google Scholar 

  19. Qiao M, Liu P, Ren X, Feng T, Zhang Z (2015) Potential protection of taurine on antioxidant system and ATPase in brain and blood of rats exposed to aluminum. Biotechnol Lett 37:1579–1584. doi:10.1007/s10529-015-1846-9

    Article  CAS  PubMed  Google Scholar 

  20. Liu P, Yao YN, Wu SD, Dong HJ, Feng GC, Yuan XY (2005) The efficacy of deferiprone on tissues aluminum removal and copper, zinc, manganese level in rabbits. J Inorg Biochem 99(8):1733–1737. doi:10.1016/j.jinorgbio.2005.06.002

    Article  CAS  PubMed  Google Scholar 

  21. Oztürk B, Ozdemir S (2015) Effects of aluminum chloride on some trace elements and erythrocyte osmotic fragility in rats. Toxicol Ind Health 31(12):1069–1077. doi:10.1177/0748233713486956

    Article  PubMed  Google Scholar 

  22. Gu Q, Li X, Zhang L, Huang J, Li Y (2009) Effects of aluminium intoxication on metal elements contents of cerebrum and cerebellum in chicks. China Poultry 31(23):15–17

    Google Scholar 

  23. Bondy S, Kirstein S (1996) The promotion of iron-induced generation of reactive oxygen species in nerve tissue by aluminum. Mol Chem Neuropathol 27(2):185–194. doi:10.1007/bf02815093

    Article  CAS  PubMed  Google Scholar 

  24. Noremberg S, Bohrer D, Schetinger MRC, Bairros AV, Gutierres J, Gonçalves JF, Veiga M, Santos FW (2015) Silicon reverses lipid peroxidation but not acetylcholinesterase activity induced by long-term exposure to low aluminum levels in rat brain regions. Biol Trace Elem Res 169(1):77–85. doi:10.1007/s12011-015-0392-6

    Article  PubMed  Google Scholar 

  25. Jangra A, Kasbe P, Pandey SN, Dwivedi S, Gurjar SS, Kwatra M, Mishra M, Venu AK, Sulakhiya K, Gogoi R, Sarma N, Bezbaruah BK, Lahkar M (2015) Hesperidin and silibinin ameliorate aluminum-induced neurotoxicity: modulation of antioxidants and inflammatory cytokines level in mice hippocampus. Biol Trace Elem Res 168(2):462–471. doi:10.1007/s12011-015-0375-7

    Article  CAS  PubMed  Google Scholar 

  26. Kumar V, Bal A, Gill KD (2009) Susceptibility of mitochondrial superoxide dismutase to aluminium induced oxidative damage. Toxicology 255(3):117–123. doi:10.1016/j.tox.2008.10.009

    Article  CAS  PubMed  Google Scholar 

  27. Kumar V, Bal A, Gill KD (2008) Impairment of mitochondrial energy metabolism in different regions of rat brain following chronic exposure to aluminium. Brain Res 1232(0):94–103. doi:10.1016/j.brainres.2008.07.028

    Article  CAS  PubMed  Google Scholar 

  28. Sharma D, Sethi P, Hussain E, Singh R (2009) Curcumin counteracts the aluminium-induced ageing-related alterations in oxidative stress, Na+, K+ ATPase and protein kinase C in adult and old rat brain regions. Biogerontology 10(4):489–502. doi:10.1007/s10522-008-9195-x

    Article  CAS  PubMed  Google Scholar 

  29. Ripps H, Shen W (2012) Review: taurine: a “very essential” amino acid. Mol Vis 18:2673–2686

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Jong C, Azuma J, Schaffer S (2012) Mechanism underlying the antioxidant activity of taurine: prevention of mitochondrial oxidant production. Amino Acids 42(6):2223–2232. doi:10.1007/s00726-011-0962-7

    Article  CAS  PubMed  Google Scholar 

  31. Schaffer SW, Azuma J, Mozaffari M (2009) Role of antioxidant activity of taurine in diabetes. Can J Physiol Pharmacol 87(2):91–99. doi:10.1139/y08-110 This article is one of a selection of papers from the NATO Advanced Research Workshop on Translational Knowledge for Heart Health (published in part 1 of a 2-part special issue).

    Article  CAS  PubMed  Google Scholar 

  32. Ai Ying Xiao LW, Xia S, Rothman S, Yu SP (2002) Ionic mechanism of ouabain-induced concurrent apoptosis and necrosis in individual cultured cortical neurons. J Neurosci 22(4):1350–1362

    PubMed  Google Scholar 

  33. Sethi P, Jyoti A, Singh R, Hussain E, Sharma D (2008) Aluminium-induced electrophysiological, biochemical and cognitive modifications in the hippocampus of aging rats. Neurotoxicology 29(6):1069–1079. doi:10.1016/j.neuro.2008.08.005

    Article  CAS  PubMed  Google Scholar 

  34. Zugno AI, Scherer EBS, Mattos C, Ribeiro CAJ, Wannmacher CMD, Wajner M, Wyse ATS (2007) Evidence that the inhibitory effects of guanidinoacetate on the activities of the respiratory chain, Na+, K+-ATPase and creatine kinase can be differentially prevented by taurine and vitamins E and C administration in rat striatum in vivo. Biochim Biophys Acta 1772(5):563–569. doi:10.1016/j.bbadis.2007.02.005

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The work was supported by the Natural Science Foundation of Shandong Province, China (No ZR2013CM043). We also acknowledge the support of the College of Public Health, Shandong University, and Professor Liu ping.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, T., Liu, P., Zhang, Z. et al. Combination of DFP and Taurine Counteracts the Aluminum-Induced Alterations in Oxidative Stress and ATPase in Cortex and Blood of Rats. Biol Trace Elem Res 174, 142–149 (2016). https://doi.org/10.1007/s12011-016-0692-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-016-0692-5

Keywords

Navigation