Skip to main content

Advertisement

Log in

Concentrations of Chromium, Selenium, and Copper in the Hair of Viscerally Obese Adults are Associated with Insulin Resistance

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Visceral adiposity is linked to the development of insulin resistance, which is a condition that may contribute to metabolic abnormalities and cardiovascular disease. Various minerals play essential roles in different metabolic functions in the body. Thus, the relationships between mineral concentrations in the hair and insulin resistance were analyzed in 144 Korean adults (71 viscerally obese subjects and 73 normal control subjects) in this cross-sectional study. Visceral obesity was measured using a bioelectrical impedance analysis (BIA), and insulin resistance levels were assessed using the homeostasis model assessment insulin resistance (HOMA-IR) index. The viscerally obese group exhibited significantly higher levels of serum glucose (96.5 vs 91.0 mg/dL, P = 0.023), insulin concentration (4.78 vs 2.98 μIU/mL, P = 0.003), and the HOMA-IR index (1.18 vs 0.64, P = 0.003) compared with the normal control group. After adjusting for age and sex, there was a positive correlation between copper levels in the hair and the HOMA-IR index in the viscerally obese group (r = 0.241, P = 0.046) whereas chromium and selenium levels in the hair were negatively correlated with the HOMA-IR index (r = −0.256, P = 0.034, and r = −0.251, P = 0.038, respectively). Thus, chromium and selenium levels in the hair of viscerally obese adults were inversely associated with insulin resistance, whereas copper levels in the hair were positively associated with insulin resistance. This suggests that the mineral status of viscerally obese adults might play a role in the development of insulin resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bastien M, Poirier P, Lemieux I, Despres JP (2014) Overview of epidemiology and contribution of obesity to cardiovascular disease. Prog Cardiovasc Dis 56(4):369–381. doi:10.1016/j.pcad.2013.10.016

    Article  PubMed  Google Scholar 

  2. Joyal SV (2004) A perspective on the current strategies for the treatment of obesity. Curr Drug Targets CNS Neurol Disord 3(5):341–356

    Article  PubMed  CAS  Google Scholar 

  3. Patel P, Abate N (2013) Role of subcutaneous adipose tissue in the pathogenesis of insulin resistance. J Obes 2013:489187. doi:10.1155/2013/489187

    PubMed Central  PubMed  Google Scholar 

  4. Hayashi T, Boyko EJ, McNeely MJ, Leonetti DL, Kahn SE, Fujimoto WY (2008) Visceral adiposity, not abdominal subcutaneous fat area, is associated with an increase in future insulin resistance in Japanese Americans. Diabetes 57(5):1269–1275. doi:10.2337/db07-1378

    Article  PubMed  CAS  Google Scholar 

  5. Yudkin JS (2003) Adipose tissue, insulin action and vascular disease: inflammatory signals. Int J Obes Relat Metab Disord 27(Suppl 3):S25–S28. doi:10.1038/sj.ijo.0802496

    Article  PubMed  CAS  Google Scholar 

  6. Neeland IJ, Ayers CR, Rohatgi AK, Turer AT, Berry JD, Das SR, Vega GL, Khera A, McGuire DK, Grundy SM, de Lemos JA (2013) Associations of visceral and abdominal subcutaneous adipose tissue with markers of cardiac and metabolic risk in obese adults. Obesity (Silver Spring) 21(9):E439–E447. doi:10.1002/oby.20135

    CAS  Google Scholar 

  7. Ren XH, Yao YS, He LP, Jin YL, Chang WW, Li J, Chen Y, Song XL, Tang H, Ding LL, Guo DX, Li CP (2013) Overweight and obesity associated with increased total serum calcium level: comparison of cross-sectional data in the health screening for teaching faculty. Biol Trace Elem Res 156(1–3):74–78. doi:10.1007/s12011-013-9856-8

    Article  PubMed  CAS  Google Scholar 

  8. Byyny RL, LoVerde M, Lloyd S, Mitchell W, Draznin B (1992) Cytosolic calcium and insulin resistance in elderly patients with essential hypertension. Am J Hypertens 5(7):459–464

    PubMed  CAS  Google Scholar 

  9. Corica F, Corsonello A, Ientile R, Cucinotta D, Di Benedetto A, Perticone F, Dominguez LJ, Barbagallo M (2006) Serum ionized magnesium levels in relation to metabolic syndrome in type 2 diabetic patients. J Am Coll Nutr 25(3):210–215

    Article  PubMed  CAS  Google Scholar 

  10. Huerta MG, Roemmich JN, Kington ML, Bovbjerg VE, Weltman AL, Holmes VF, Patrie JT, Rogol AD, Nadler JL (2005) Magnesium deficiency is associated with insulin resistance in obese children. Diabetes Care 28(5):1175–1181

    Article  PubMed  CAS  Google Scholar 

  11. Vanaelst B, Huybrechts I, Michels N, Florez MR, Aramendia M, Balcaen L, Resano M, Vanhaecke F, Bammann K, Bel-Serrat S, De Henauw S (2013) Hair minerals and metabolic health in Belgian elementary school girls. Biol Trace Elem Res 151(3):335–343. doi:10.1007/s12011-012-9573-8

    Article  PubMed  CAS  Google Scholar 

  12. Suliburska J, Bogdanski P, Pupek-Musialik D, Krejpcio Z (2011) Dietary intake and serum and hair concentrations of minerals and their relationship with serum lipids and glucose levels in hypertensive and obese patients with insulin resistance. Biol Trace Elem Res 139(2):137–150. doi:10.1007/s12011-010-8650-0

    Article  PubMed  CAS  Google Scholar 

  13. Suliburska J, Cofta S, Gajewska E, Kalmus G, Sobieska M, Samborski W, Krejpcio Z, Drzymala-Czyz S, Bogdanski P (2013) The evaluation of selected serum mineral concentrations and their association with insulin resistance in obese adolescents. Eur Rev Med Pharmacol Sci 17(17):2396–2400

    PubMed  CAS  Google Scholar 

  14. Olusi S, Al-Awadhi A, Abiaka C, Abraham M, George S (2003) Serum copper levels and not zinc are positively associated with serum leptin concentrations in the healthy adult population. Biol Trace Elem Res 91(2):137–144. doi:10.1385/bter:91:2:137

    Article  PubMed  CAS  Google Scholar 

  15. Guo CH, Chen PC, Ko WS (2013) Status of essential trace minerals and oxidative stress in viral hepatitis C patients with nonalcoholic fatty liver disease. Int J Med Sci 10(6):730–737. doi:10.7150/ijms.6104

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  16. Kazi TG, Afridi HI, Kazi N, Jamali MK, Arain MB, Jalbani N, Kandhro GA (2008) Copper, chromium, manganese, iron, nickel, and zinc levels in biological samples of diabetes mellitus patients. Biol Trace Elem Res 122(1):1–18. doi:10.1007/s12011-007-8062-y

    Article  PubMed  CAS  Google Scholar 

  17. Abou-Seif MA, Youssef AA (2004) Evaluation of some biochemical changes in diabetic patients. Clin Chim Acta int J Clin Chem 346(2):161–170. doi:10.1016/j.cccn.2004.03.030

    Article  CAS  Google Scholar 

  18. Campbell JD (2001) Lifestyle, minerals and health. Med Hypotheses 57(5):521–531. doi:10.1054/mehy.2001.1351

    Article  PubMed  CAS  Google Scholar 

  19. Basaki M, Saeb M, Nazifi S, Shamsaei HA (2012) Zinc, copper, iron, and chromium concentrations in young patients with type 2 diabetes mellitus. Biol Trace Elem Res 148(2):161–164. doi:10.1007/s12011-012-9360-6

    Article  PubMed  CAS  Google Scholar 

  20. Chung JH, Yum KS (2012) Correlation of hair mineral concentrations with insulin resistance in Korean males. Biol Trace Elem Res 150(1–3):26–30. doi:10.1007/s12011-012-9474-x

    Article  PubMed  CAS  Google Scholar 

  21. Klevay LM, Bistrian BR, Fleming CR, Neumann CG (1987) Hair analysis in clinical and experimental medicine. Am J Clin Nutr 46(2):233–236

    PubMed  CAS  Google Scholar 

  22. Levine JA, Abboud L, Barry M, Reed JE, Sheedy PF, Jensen MD (2000) Measuring leg muscle and fat mass in humans: comparison of CT and dual-energy X-ray absorptiometry. J Appl Physiol (Bethesda, MD: 1985) 88(2):452–456

    CAS  Google Scholar 

  23. Karlsson AK, Kullberg J, Stokland E, Allvin K, Gronowitz E, Svensson PA, Dahlgren J (2013) Measurements of total and regional body composition in preschool children: a comparison of MRI, DXA, and anthropometric data. Obesity (Silver Spring) 21(5):1018–1024. doi:10.1002/oby.20205

    Article  Google Scholar 

  24. Malavolti M, Mussi C, Poli M, Fantuzzi AL, Salvioli G, Battistini N, Bedogni G (2003) Cross-calibration of eight-polar bioelectrical impedance analysis versus dual-energy X-ray absorptiometry for the assessment of total and appendicular body composition in healthy subjects aged 21–82 years. Ann Hum Biol 30(4):380–391. doi:10.1080/0301446031000095211

    Article  PubMed  CAS  Google Scholar 

  25. Lintsi M, Kaarma H, Kull I (2004) Comparison of hand-to-hand bioimpedance and anthropometry equations versus dual-energy X-ray absorptiometry for the assessment of body fat percentage in 17–18-year-old conscripts. Clin Physiol Funct Imaging 24(2):85–90. doi:10.1111/j.1475-097X.2004.00534.x

    Article  PubMed  Google Scholar 

  26. Fakhrawi DH, Beeson L, Libanati C, Feleke D, Kim H, Quansah A, Darnell A, Lammi-Keefe CJ, Cordero-MacIntyre Z (2009) Comparison of body composition by bioelectrical impedance and dual-energy X-ray absorptiometry in overweight/obese postmenopausal women. J Clin Densitom 12(2):238–244. doi:10.1016/j.jocd.2009.01.004

    Article  PubMed  Google Scholar 

  27. Anderson LJ, Erceg DN, Schroeder ET (2012) Utility of multifrequency bioelectrical impedance compared with dual-energy X-ray absorptiometry for assessment of total and regional body composition varies between men and women. Nutr Res 32(7):479–485. doi:10.1016/j.nutres.2012.05.009

    Article  PubMed  CAS  Google Scholar 

  28. Lim S, Choi SH, Park YJ, Park KS, Lee HK, Jang HC, Cho NH, Metzger BE (2007) Visceral fatness and insulin sensitivity in women with a previous history of gestational diabetes mellitus. Diabetes care 30(2):348–353. doi:10.2337/dc06-1405

    Article  PubMed  Google Scholar 

  29. Okauchi Y, Kishida K, Funahashi T, Noguchi M, Ogawa T, Ryo M, Okita K, Iwahashi H, Imagawa A, Nakamura T, Matsuzawa Y, Shimomura I (2010) Absolute value of bioelectrical impedance analysis-measured visceral fat area with obesity-related cardiovascular risk factors in Japanese workers. J Atheroscler Thromb 17(12):1237–1245

    Article  PubMed  Google Scholar 

  30. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC (1985) Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28(7):412–419

    Article  PubMed  CAS  Google Scholar 

  31. Nakamura K, Fuster JJ, Walsh K (2013) Adipokines: a link between obesity and cardiovascular disease. J Cardiol. doi:10.1016/j.jjcc.2013.11.006

    PubMed Central  Google Scholar 

  32. Sanip Z, Ariffin FD, Al-Tahami BA, Sulaiman WA, Rasool AH (2013) Obesity indices and metabolic markers are related to hs-CRP and adiponectin levels in overweight and obese females. Obes Res Clin Pract 7(4):e235–e320. doi:10.1016/j.orcp.2012.05.002

    Article  Google Scholar 

  33. Lehrke M, Broedl UC, Biller-Friedmann IM, Vogeser M, Henschel V, Nassau K, Goke B, Kilger E, Parhofer KG (2008) Serum concentrations of cortisol, interleukin 6, leptin and adiponectin predict stress induced insulin resistance in acute inflammatory reactions. Crit Care 12(6):R157. doi:10.1186/cc7152

    Article  PubMed Central  PubMed  Google Scholar 

  34. Brochu M, Mathieu ME, Karelis AD, Doucet E, Lavoie ME, Garrel D, Rabasa-Lhoret R (2008) Contribution of the lean body mass to insulin resistance in postmenopausal women with visceral obesity: a Monet study. Obesity (Silver Spring, Md) 16(5):1085–1093. doi:10.1038/oby.2008.23

    Article  CAS  Google Scholar 

  35. Mertz W (1969) Chromium occurrence and function in biological systems. Physiol Rev 49(2):163–239

    PubMed  CAS  Google Scholar 

  36. Vincent JB (2003) The potential value and toxicity of chromium picolinate as a nutritional supplement, weight loss agent and muscle development agent. Sports Med (Auckland, NZ) 33(3):213–230

    Article  Google Scholar 

  37. Stupar J, Vrtovec M, Dolinsek F (2007) Longitudinal hair chromium profiles of elderly subjects with normal glucose tolerance and type 2 diabetes mellitus. Metab Clin Exp 56(1):94–104. doi:10.1016/j.metabol.2006.09.003

    Article  PubMed  CAS  Google Scholar 

  38. Wiechula D, Loska K, Ungier D, Fischer A (2012) Chromium, zinc and magnesium concentrations in the pubic hair of obese and overweight women. Biol Trace Elem Res 148(1):18–24. doi:10.1007/s12011-012-9339-3

    Article  PubMed  CAS  Google Scholar 

  39. Chen QL, Luo Z, Liu X, Song YF, Liu CX, Zheng JL, Zhao YH (2013) Effects of waterborne chronic copper exposure on hepatic lipid metabolism and metal-element composition in Synechogobius hasta. Arch Environ Contam Toxicol 64(2):301–315. doi:10.1007/s00244-012-9835-7

    Article  PubMed  CAS  Google Scholar 

  40. Rayman MP (2000) The importance of selenium to human health. Lancet 356(9225):233–241. doi:10.1016/s0140-6736(00)02490-9

    Article  PubMed  CAS  Google Scholar 

  41. Beaglehole R, Jackson R, Watkinson J, Scragg R, Yee RL (1990) Decreased blood selenium and risk of myocardial infarction. Int J Epidemiol 19(4):918–922

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang-Wook Song.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, HN., Song, SW. Concentrations of Chromium, Selenium, and Copper in the Hair of Viscerally Obese Adults are Associated with Insulin Resistance. Biol Trace Elem Res 158, 152–157 (2014). https://doi.org/10.1007/s12011-014-9934-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-014-9934-6

Key words

Navigation