Skip to main content

Advertisement

Log in

Zinc Enhances Bone Metabolism in Ovariectomized Rats and Exerts Anabolic Osteoblastic/Adipocytic Marrow Effects Ex Vivo

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Investigations of bone mass and marrow adiposity are critical for defining the role of zinc (Zn) in bone metabolism. Rats used for study were grouped as follows: control (sham), ovariectomy (OVX), ovariectomy + estradiol (OVX-E), ovariectomy + Zn treatment (OVX-Zn). Bone mineral density (BMD) was quantified (microCT); serum osteocalcin, adiponectin, RANKL, and TRAP levels were assayed (ELISA); and biochemical determinations of serum alkaline phosphatase (ALP), calcium (Ca), and phosphorus (P) were done. Cells derived from bone mesenchymal stem cell (BMSC) isolates of respective test groups were compared, identifying primary osteoblasts by MTT assay and adipocytes by Oil Red O stain. Osteocalcin and adiponectin levels in culture supernatants were determined by ELISA. Zn supplementation resulted in a modest increase in BMD, but serum osteocalcin and ALP activity increased significantly (P < 0.01, both). Serum levels of RANKL and TRAP were lower in OVX-Zn (vs OVX) rats (P < 0.01), whereas serum concentrations of adiponectin, Ca, and P did not differ by group. Osteocalcin level was significantly upregulated ex vivo (P < 0.01) in the supernatant of cultured OVX-Zn (vs OVX) cells, accompanied by a slight upturn in osteoblastic differentiation. However, Oil Red O uptake and adiponectin level in supernatant were sharply diminished in cultured OVX-Zn (vs OVX) cells (P < 0.01). Overall, we concluded that Zn contributes to bone mass by marginally stimulating differentiation and proliferation of osteoblasts and by effectively inhibiting osteoclastic and adipocytic differentiation of BMSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Haumont S (1961) Distribution of zinc in bone tissues. J Histochem Cytochem 9(2):141–145

    Article  CAS  PubMed  Google Scholar 

  2. Aaseth J, Boivin G, Andersen O (2012) Osteoporosis and trace elements—an overview. J Trace Elem Med Biol 26(2–3):149–152

    Article  CAS  PubMed  Google Scholar 

  3. Yamaguchi M, Oishi H, Suketa Y (1987) Stimulatory effect of zinc on bone formation in tissue culture. Biochem Pharmacol 36(22):4007–4012

    Article  CAS  PubMed  Google Scholar 

  4. Seo HJ, Cho YE, Kim T, Shin HI, Kwun IS (2010) Zinc may increase bone formation through stimulating cell proliferation, alkaline phosphatase activity and collagen synthesis in osteoblastic MC3T3-E1 cells. Nutr Res Pract 4(5):356–361

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Eberle J, Schmidmayer S, Erben RG, Stangassinger M, Roth HP (1999) Skeletal effects of zinc deficiency in growing rats. J Trace Elem Med Biol 13(1–2):21–26

    Article  CAS  PubMed  Google Scholar 

  6. Liang D, Yang M, Guo B, Cao J, Yang L, Guo X (2012) Zinc upregulates the expression of osteoprotegerin in mouse osteoblasts MC3T3-E1 through PKC/MAPKpathways. Biol Trace Elem Res 146(3):340–348

    Article  CAS  PubMed  Google Scholar 

  7. Li BB, Yu SF (2006) Effect of extracellular zinc on osteoclastic resorption in dental mineralized tissues. J Peking Univ Health Sci 38(6):644–647

    CAS  Google Scholar 

  8. Yamaguchi M, Uchiyama S (2004) Receptor activator of NF-kappa B ligand stimulated osteoclastogenesis in mouse marrow culture is suppressed by zinc in vitro. Int J Mol Med 14(1):81–85

    CAS  PubMed  Google Scholar 

  9. Hie M, Tsukamoto I (2011) Administration of zinc inhibits osteoclastogenesis through the suppression of RANK expression in bone. Eur J Pharmacol 668(1–2):140–146

    Article  CAS  PubMed  Google Scholar 

  10. Park KH, Park B, Yoon DS et al (2013) Zinc inhibits osteoclast differentiation by suppression of Ca2 + −Calcineurin-NFATc1 signaling pathway. Cell Commun Signal. doi:10.1186/1478-811X-11-74

    PubMed Central  PubMed  Google Scholar 

  11. Razmandeh R, Nasli-Esfahani E, Heydarpour R et al (2014) Association of zinc, copper and magnesium with bone mineral density in Iranian postmenopausal women—a casecontrol study. J Diabetes Metab Disord 13(1):43. doi:10.1186/2251-6581-13-43

    Article  PubMed Central  PubMed  Google Scholar 

  12. Yamaguchi M, Weitzmann MN (2011) Zinc stimulates osteoblastogenesis and suppresses osteoclastogenesis by antagonizing NF-κB activation. Mol Cell Biochem 355(1–2):179–186

    Article  CAS  PubMed  Google Scholar 

  13. New SA (1997) Nutritional influences on bone mineral density: a cross-sectional study in premenopausal women. Am J Clin Nutr 65(6):1831–1839

    CAS  PubMed  Google Scholar 

  14. Bhardwaj P, Rai DV, Garg ML (2013) Zinc as a nutritional approach to bone loss prevention in an ovariectomized rat model. Menopause 20(11):1184–1193

    Article  PubMed  Google Scholar 

  15. Atkinson RL, Dahms WT, Bray GA, Jacob R, Sandstead HH (1978) Plasma zinc and copper in obesity and after intestinal bypass. Ann Intern Med 89(4):491–493

    Article  CAS  PubMed  Google Scholar 

  16. Di Martino G, Matera MG, De Martino B, Vacca C, Di Martino S, Rossi F (1993) Relationship between zinc and obesity. J Med 24(2–3):177–183

    PubMed  Google Scholar 

  17. Marreiro DN, Fisberg M, Cozzolino SM (2002) Zinc nutritional status in obese children and adolescents. Biol Trace Elem Res 86(2):107–122

    Article  PubMed  Google Scholar 

  18. Liu MJ, Bao S, Bolin ER et al (2013) Zinc deficiency augments leptin production and exacerbates macrophage infiltration into adipose tissue in mice fed a high-fat diet. J Nutr 143(7):1036–1045

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Patsch JM, Li X, Baum T et al (2013) Bone marrow fat composition as a novel imaging biomarker in postmenopausal women with prevalent fragility fractures. J Bone Miner Res 28(8):1721–1728

    Article  PubMed Central  PubMed  Google Scholar 

  20. Georgiou KR, Hui SK, Xian CJ (2012) Regulatory pathways associated with bone loss and bone marrow adiposity caused by aging, chemotherapy, glucocorticoid therapy and radiotherapy. Am J Stem Cells 1(3):205–224

    PubMed Central  PubMed  Google Scholar 

  21. Morita Y, Iwamoto I, Mizuma N et al (2006) Precedence of the shift of body-fat distribution over the change in body composition after menopause. J Obstet Gynaecol Res 32(5):513–516

    Article  PubMed  Google Scholar 

  22. Pittenger MF, Mackay AM, Beck SC et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284(5411):143–147

    Article  CAS  PubMed  Google Scholar 

  23. Taisum HH, Elizabeth BC, David BM (2004) Zinc intakes and plasma concentrations in men with osteoporosis: the Rancho Bernardo Study. Am J Clin Nutr 80(3):715–772

    Google Scholar 

  24. Cao T, Shirota T, Yamazaki M, Ohno K, Michi KI (2001) Bone mineral density in mandibles of ovariectomized rabbits. Clin Oral Implants Res 12(6):604–608

    Article  CAS  PubMed  Google Scholar 

  25. Siris ES, Boonen S, Mitchell PJ, Bilezikian J, Silverman S (2012) What’s in a name? What constitutes the clinical diagnosis of osteoporosis? Osteoporos Int 23(8):2093–2097

    Article  CAS  PubMed  Google Scholar 

  26. Bancroft GN, Sikavitsas VI, van den Dolder J et al (2002) Fluid flow increases mineralized matrix deposition in 3D perfusion culture of marrow stromal osteoblasts in a dose-dependent manner. Proc Natl Acad Sci U S A 99(20):12600–12605

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. DiGirolamo CM, Stokes D, Colter DG, Phinney DG, Class R, Prockop DJ (1999) Propagation and senescence of human marrow stromal cells in culture—a simple colony-forming assay identifies samples with the greatest potential to propagate and differentiate. Br J Haematol 107(2):275–281

    Article  CAS  PubMed  Google Scholar 

  28. Rozman C, Feliu E, Berga L, Reverter JC, Climent C, Ferran MJ (1989) Age-related variations of fat tissue fraction in normal human bone marrow depend both on size and number of adipocytes: a stereological study. Exp Hematol 17(1):34–37

    CAS  PubMed  Google Scholar 

  29. Li GW, Xu Z, Chang SX, Nian H, Wang XY, Qin LD (2014) Icariin prevents ovariectomy-induced bone loss and lowers marrow adipogenesis. Menopause 21(9):1007–1016

    Article  PubMed  Google Scholar 

  30. Menagh PJ, Turner RT, Jump DB et al (2010) Growth hormone regulates the balance between bone formation and bone marrow adiposity. J Bone Miner Res 25(4):757–768

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Hirota K, Morikawa K, Hanada H et al (2010) Effect of genistein and daidzein on the proliferation and differentiation of human preadipocyte cell line. J Agric Food Chem 58(9):5821–5827

    Article  CAS  PubMed  Google Scholar 

  32. Lee OH, Seo DH, Park CS, Kim YC (2010) Puerarin enhances adipocyte differentiation, adiponectin expression, and antioxidant response in 3T3-L1 cells. Biofactors 36(6):459–467

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was funded by National Natural Science Foundations of China, Beijing, China (No. 30901671).

Conflict of interest

The authors certify that there is no conflict of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Binbin Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, B., Liu, H. & Jia, S. Zinc Enhances Bone Metabolism in Ovariectomized Rats and Exerts Anabolic Osteoblastic/Adipocytic Marrow Effects Ex Vivo. Biol Trace Elem Res 163, 202–207 (2015). https://doi.org/10.1007/s12011-014-0185-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-014-0185-3

Keywords

Navigation