Skip to main content
Log in

Zinc stimulates osteoblastogenesis and suppresses osteoclastogenesis by antagonizing NF-κB activation

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Zinc is essential for numerous biochemical pathways in the body and is known to significantly affect the skeleton. Zinc has a profound effect on bone turnover promoting bone formation and mineralization, but paradoxically inhibiting osteoclastic bone breakdown (resorption). How zinc regulates these disparate effects on bone cells, however, is poorly understood. We recently characterized several pharmacological and nutritional factors that are likewise endowed with the capacity to promote bone formation and suppress bone resorption and demonstrated that a common centralized mechanism for achieving such actions is through suppression of NF-κB activation. NF-κB is a pathway required for osteoclastogenesis, but suppresses osteoblast differentiation. In this study, we investigated the actions of zinc on NF-κB activation in osteoclast and osteoblast precursors in vitro. Our data show that zinc suppressed osteoclast differentiation and promoted osteoblast mineralization and did indeed act as a potent NF-κB activation antagonist in both osteoclast and osteoblast precursors. Importantly, zinc antagonized NF-κB activation driven by TNFα, a potent inflammatory mediator or bone resorption and suppressor of bone formation in vitro and in vivo. Zinc further alleviated the suppressive effect of TNFα on Smad activation induced by TGFβ and BMP2, cytokines that play critical roles in osteoblast commitment, differentiation, and recruitment to sites of bone remodeling. In conclusion, our data reveal for the first time that a major mechanism by which zinc promotes osteoblastogenesis and suppresses osteoclastogenesis may center on the antagonism of NF-κB activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Yamaguchi M (2010) Role of nutritional zinc in the prevention of osteoporosis. Mol Cell Biochem 338:241–254

    Article  PubMed  CAS  Google Scholar 

  2. Leek JC, Vogler JB, Gershwin ME, Golub MS, Hurley LS, Hendrickx AG (1984) Studies of marginal zinc deprivation in rhesus monkeys. V. Fetal and infant skeletal effects. Am J Clin Nutr 40:1203–1212

    PubMed  Google Scholar 

  3. Angus RM, Sambrook PN, Pocock NA, Eisman JA (1988) Dietary intake and bone mineral density. Bone Miner 4:265–277

    PubMed  CAS  Google Scholar 

  4. Sandstead HH, Prasad AS, Schulert AR, Farid Z, Miale A Jr, Bassilly S et al (1967) Human zinc deficiency, endocrine manifestations and response to treatment. Am J Clin Nutr 20:422–442

    PubMed  CAS  Google Scholar 

  5. Moonga BS, Dempster DW (1995) Zinc is a potent inhibitor of osteoclastic bone resorption in vitro. J Bone Miner Res 10:453–457

    Article  PubMed  CAS  Google Scholar 

  6. Hadley KB, Newman SM, Hunt JR (2010) Dietary zinc reduces osteoclast resorption activities and increases markers of osteoblast differentiation, matrix maturation, and mineralization in the long bones of growing rats. J Nutr Biochem 21:297–303

    Article  PubMed  CAS  Google Scholar 

  7. Segawa Y, Tsuzuike N, Itokazu Y, Tagashira E, Yamaguchi M (1993) Effect of beta-alanyl-l-histidinato zinc on bone metabolism in rats with adjuvant arthritis. Biol Pharm Bull 16:656–659

    PubMed  CAS  Google Scholar 

  8. Ehara Y, Takahashi H, Hanahisa Y, Yamaguchi M (1996) Effect of vitamin K2 (menaquinone-7) on bone metabolism in the femoral-metaphyseal tissues of normal and skeletal-unloaded rats: enhancement with zinc. Res Exp Med (Berl) 196:171–178

    CAS  Google Scholar 

  9. Yamaguchi M, Gao YH (1998) Anabolic effect of genistein and genistin on bone metabolism in the femoral-metaphyseal tissues of elderly rats: the genistein effect is enhanced by zinc. Mol Cell Biochem 178:377–382

    Article  PubMed  CAS  Google Scholar 

  10. Janssens K, Ten Dijke P, Janssens S, Van Hul W (2005) Transforming growth factor-β1 to the bone. Endocr Rev 26:743–774

    Article  PubMed  CAS  Google Scholar 

  11. Tang Y, Wu X, Lei W, Pang L, Wan C, Shi Z et al (2009) TGF-beta1-induced migration of bone mesenchymal stem cells couples bone resorption with formation. Nat Med 215:757–765

    Article  Google Scholar 

  12. Ducy P, Zhang R, Geoffroy V, Ridall AL, Karsenty G (1997) Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell 89:747–754

    Article  PubMed  CAS  Google Scholar 

  13. Nakashima K, Zhou X, Kunkel G, Zhang Z, Deng JM, Behringer RR et al (2002) The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell 108:17–29

    Article  PubMed  CAS  Google Scholar 

  14. Dimai HP, Hall SL, Stilt-Coffing B, Farley JR (1998) Skeletal response to dietary zinc in adult female mice. Calcif Tissue Int 62:309–315

    Article  PubMed  CAS  Google Scholar 

  15. Uchiyama S, Yamaguchi M (2008) Anabolic effect of beta-cryptoxanthin in osteoblastic MC3T3–E1 cells is enhanced with 17beta-estradiol, genistein, or zinc sulfate in vitro: the unique effect with zinc on Runx2 and alpha1(I) collagen mRNA expressions. Mol Cell Biochem 307:209–219

    Article  PubMed  CAS  Google Scholar 

  16. Nagata M, Lonnerdal B (2011) Role of zinc in cellular zinc trafficking and mineralization in a murine osteoblast-like cell line. J Nutr Biochem 22:172–178

    Article  PubMed  CAS  Google Scholar 

  17. Teitelbaum SL (2000) Bone resorption by osteoclasts. Science 289:1504–1508

    Article  PubMed  CAS  Google Scholar 

  18. Yamaguchi M, Uchiyama S (2008) Combination of beta-cryptoxanthin and zinc has potent effects on apoptotic cell death and suppression of bone resorption-related gene expression in osteoclastic cells. Int J Mol Med 22:221–228

    PubMed  CAS  Google Scholar 

  19. Boyce BF, Xing L, Franzoso G, Siebenlist U (1999) Required and nonessential functions of nuclear factor-kappa B in bone cells. Bone 25:137–139

    Article  PubMed  CAS  Google Scholar 

  20. Hall TJ, Schaeublin M, Jeker H, Fuller K, Chambers TJ (1995) The role of reactive oxygen intermediates in osteoclastic bone resorption. Biochem Biophys Res Commun 207:280–287

    Article  PubMed  CAS  Google Scholar 

  21. Vaira S, Alhawagri M, Anwisye I, Kitaura H, Faccio R, Novack DV (2008) RelA/p65 promotes osteoclast differentiation by blocking a RANKL-induced apoptotic JNK pathway in mice. J Clin Invest 118:2088–2097

    PubMed  CAS  Google Scholar 

  22. Vaira S, Johnson T, Hirbe AC, Alhawagri M, Anwisye I, Sammut B et al (2008) RelB is the NF-kappaB subunit downstream of NIK responsible for osteoclast differentiation. Proc Natl Acad Sci USA 105:3897–3902

    Article  PubMed  CAS  Google Scholar 

  23. Liu J, Wang S, Zhang P, Said-Al-Naief N, Michalek SM, Feng X (2009) Molecular mechanism of the bifunctional role of lipopolysaccharide in osteoclastogenesis. J Biol Chem 284:12512–12523

    Article  PubMed  CAS  Google Scholar 

  24. Boyce BF, Yao Z, Xing L (2010) Functions of nuclear factor kappaB in bone. Ann N Y Acad Sci 1192:367–375

    Article  PubMed  CAS  Google Scholar 

  25. Iotsova V, Caamano J, Loy J, Yang Y, Lewin A, Bravo R (1997) Osteopetrosis in mice lacking NF-kappaB1 and NF-kappaB2. Nat Med 3:1285–1289

    Article  PubMed  CAS  Google Scholar 

  26. Cenci S, Weitzmann MN, Roggia C, Namba N, Novack D, Woodring J et al (2000) Estrogen deficiency induces bone loss by enhancing T-cell production of TNF-alpha. J Clin Invest 106:1229–1237

    Article  PubMed  CAS  Google Scholar 

  27. Lam J, Takeshita S, Barker JE, Kanagawa O, Ross FP, Teitelbaum SL (2000) TNF-alpha induces osteoclastogenesis by direct stimulation of macrophages exposed to permissive levels of RANK ligand. J Clin Invest 106:1481–1488

    Article  PubMed  CAS  Google Scholar 

  28. Zhang YH, Heulsmann A, Tondravi MM, Mukherjee A, Abu-Amer Y (2001) Tumor necrosis factor-alpha (TNF) stimulates RANKL-induced osteoclastogenesis via coupling of TNF type 1 receptor and RANK signaling pathways. J Biol Chem 276:563–568

    Article  PubMed  CAS  Google Scholar 

  29. Strait K, Li Y, Dillehay DL, Weitzmann MN (2008) Suppression of NF-kappa B activation blocks osteoclastic bone resorption during estrogen deficiency. Int J Mol Med 21:521–525

    PubMed  CAS  Google Scholar 

  30. Feng R, Anderson G, Xiao G, Elliott G, Leoni L, Mapara MY et al (2007) SDX-308, a nonsteroidal anti-inflammatory agent, inhibits NF-kappaB activity, resulting in strong inhibition of osteoclast formation/activity and multiple myeloma cell growth. Blood 109:2130–2138

    Article  PubMed  CAS  Google Scholar 

  31. Dai S, Hirayama T, Abbas S, Abu-Amer Y (2004) The IkappaB kinase (IKK) inhibitor, NEMO-binding domain peptide, blocks osteoclastogenesis and bone erosion in inflammatory arthritis. J Biol Chem 279:37219–37222

    Article  PubMed  CAS  Google Scholar 

  32. Clohisy JC, Hirayama T, Frazier E, Han SK, Abu-Amer Y (2004) NF-kB signaling blockade abolishes implant particle-induced osteoclastogenesis. J Orthop Res 22:13–20

    Article  PubMed  CAS  Google Scholar 

  33. Nanes MS (2003) Tumor necrosis factor-alpha: molecular and cellular mechanisms in skeletal pathology. Gene 321:1–15

    Article  PubMed  CAS  Google Scholar 

  34. Lu X, Farmer P, Rubin J, Nanes MS (2004) Integration of the NfkappaB p65 subunit into the vitamin D receptor transcriptional complex: identification of p65 domains that inhibit 1, 25-dihydroxyvitamin D3-stimulated transcription. J Cell Biochem 92:833–848

    Article  PubMed  CAS  Google Scholar 

  35. Wahl EC, Aronson J, Liu L, Fowlkes JL, Thrailkill KM, Bunn RC et al (2010) Restoration of regenerative osteoblastogenesis in aged mice: modulation of TNF. J Bone Miner Res 25:114–123

    Article  PubMed  CAS  Google Scholar 

  36. Li Y, Li A, Strait K, Zhang H, Nanes MS, Weitzmann MN (2007) Endogenous TNFalpha lowers maximum peak bone mass and inhibits osteoblastic Smad activation, through NF-kappaB. J Bone Miner Res 22:646–655

    Article  PubMed  CAS  Google Scholar 

  37. Chang J, Wang Z, Tang E, Fan Z, McCauley L, Franceschi R et al (2009) Inhibition of osteoblastic bone formation by nuclear factor-kappaB. Nat Med 15:682–689

    Article  PubMed  CAS  Google Scholar 

  38. Eliseev RA, Schwarz EM, Zuscik MJ, O’Keefe RJ, Drissi H, Rosier RN (2006) Smad7 mediates inhibition of Saos2 osteosarcoma cell differentiation by NFkappaB. Exp Cell Res 312:40–50

    Article  PubMed  CAS  Google Scholar 

  39. Guo R, Yamashita M, Zhang Q, Zhou Q, Chen D, Reynolds DG et al (2008) Ubiquitin ligase Smurf1 mediates tumor necrosis factor-induced systemic bone loss by promoting proteasomal degradation of bone morphogenetic signaling proteins. J Biol Chem 283:23084–23092

    Article  PubMed  CAS  Google Scholar 

  40. Yamaguchi M, Weitzmann MN (2009) The bone anabolic carotenoid beta-cryptoxanthin enhances transforming growth factor-beta1-induced SMAD activation in MC3T3 preosteoblasts. Int J Mol Med 24:671–675

    Article  PubMed  CAS  Google Scholar 

  41. Sugimoto E, Yamaguchi M (2000) Anabolic effect of genistein in osteoblastic MC3T3–E1 cells. Int J Mol Med 5:515–520

    PubMed  CAS  Google Scholar 

  42. Yamaguchi M, Weitzmann MN (2009) The estrogen 17beta-estradiol and phytoestrogen genistein mediate differential effects on osteoblastic NF-kappaB activity. Int J Mol Med 23:297–301

    PubMed  CAS  Google Scholar 

  43. Yamaguchi M, Weitzmann MN (2009) The bone anabolic carotenoids p-hydroxycinnamic acid and β-cryptoxanthin antagonize NF-κB activation in MC3T3 preosteoblasts. Mol Med Rep 2:641–644

    Article  CAS  Google Scholar 

  44. Bao B, Prasad AS, Beck FW, Fitzgerald JT, Snell D, Bao GW et al (2010) Zinc decreases C-reactive protein, lipid peroxidation, and inflammatory cytokines in elderly subjects: a potential implication of zinc as an atheroprotective agent. Am J Clin Nutr 91:1634–1641

    Article  PubMed  CAS  Google Scholar 

  45. Bao S, Liu MJ, Lee B, Besecker B, Lai JP, Guttridge DC et al (2010) Zinc modulates the innate immune response in vivo to polymicrobial sepsis through regulation of NF-kappaB. Am J Physiol Lung Cell Mol Physiol 298:L744–L754

    Article  PubMed  CAS  Google Scholar 

  46. Kimble RB, Matayoshi AB, Vannice JL, Kung VT, Williams C, Pacifici R (1995) Simultaneous block of interleukin-1 and tumor necrosis factor is required to completely prevent bone loss in the early postovariectomy period. Endocrinology 136:3054–3061

    Article  PubMed  CAS  Google Scholar 

  47. Weitzmann MN, Pacifici R (2006) Estrogen deficiency and bone loss: an inflammatory tale. J Clin Invest 116:1186–1194

    Article  PubMed  CAS  Google Scholar 

  48. Aya K, Alhawagri M, Hagen-Stapleton A, Kitaura H, Kanagawa O, Novack DV (2005) NF-(kappa)B-inducing kinase controls lymphocyte and osteoclast activities in inflammatory arthritis. J Clin Invest 115:1848–1854

    Article  PubMed  CAS  Google Scholar 

  49. Kaneki H, Guo R, Chen D, Yao Z, Schwarz EM, Zhang YE et al (2006) Tumor necrosis factor promotes Runx2 degradation through up-regulation of Smurf1 and Smurf2 in osteoblasts. J Biol Chem 281:4326–4333

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Masayoshi Yamaguchi or M. Neale Weitzmann.

Additional information

Masayoshi Yamaguchi and M. Neale Weitzmann have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamaguchi, M., Weitzmann, M.N. Zinc stimulates osteoblastogenesis and suppresses osteoclastogenesis by antagonizing NF-κB activation. Mol Cell Biochem 355, 179–186 (2011). https://doi.org/10.1007/s11010-011-0852-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-011-0852-z

Keywords

Navigation