Skip to main content
Log in

The unique role of bone marrow adipose tissue in ovariectomy-induced bone loss in mice

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Background

Accumulation of bone marrow adipose tissue (BMAT) is always seen in osteoporosis induced by estrogen deficiency. Herein, we aimed to investigate the mechanisms and consequences of this phenomenon by establishing a mouse model of osteoporosis caused by ovariectomy (OVX)-mimicked estrogen deficiency.

Methods

Micro-CT, osmium tetroxide staining, and histological analyses were performed to examine the changes in bone microstructure, BMAT and white adipose tissue (WAT) in OVX mice compared to sham mice. The osteogenesis and adipogenesis of primary bone marrow stromal cells (BMSCs) isolated from sham and OVX mice were compared in vitro. The molecular phenotypes of BMAT and WAT were determined and compared by quantitative PCR (qPCR). Bone marrow adipocyte-conditioned medium (BMA CM) was prepared from sham or OVX mice for coculture assays, and BMSCs or bone marrow monocytes/macrophages (BMMs) were isolated and subjected to osteoblast and osteoclast differentiation, respectively. Cell staining and qPCR were used to assess the effects of BMAT on bone metabolism.

Results

OVX-induced estrogen deficiency induced reductions in both cortical and trabecular bone mass along with an expansion of BMAT volume. At the cellular level, loss of estrogen inhibited BMSC osteogenesis and promoted BMSC adipogenesis, whereas addition of estradiol exerted the opposite effects. In response to estrogen deficiency, despite the common proinflammatory molecular phenotype observed in both fat depots, BMAT, unlike WAT, unexpectedly exhibited an increase in adipocyte differentiation and lipolytic activity as well as the maintenance of insulin sensitivity. Importantly, BMAT, but not WAT, presented increased mRNA levels of both BMP receptor inhibitors (Grem1, Chrdl1) and Rankl following OVX. In addition, treatment with BMA CM, especially from OVX mice, suppressed the osteoblast differentiation of BMSCs while favoring the osteoclast differentiation of BMMs.

Conclusion

Our study illustrates that OVX-induced estrogen deficiency results in bone loss and BMAT expansion by triggering imbalance between the osteogenesis and adipogenesis of BMSCs. Furthermore, expanded BMAT, unlike typical WAT, may negatively regulate bone homeostasis through paracrine inhibition of osteoblast-mediated bone formation and promotion of osteoclast-mediated bone resorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. B.J. Kim, J.M. Koh, Coupling factors involved in preserving bone balance. Cell Mol. Life Sci. 76(7), 1243–1253 (2019). https://doi.org/10.1007/s00018-018-2981-y

    Article  CAS  PubMed  Google Scholar 

  2. D.M. Black, C.J. Rosen, Clinical practice. postmenopausal osteoporosis. N. Engl. J. Med. 374(3), 254–262 (2016). https://doi.org/10.1056/NEJMcp1513724

    Article  CAS  PubMed  Google Scholar 

  3. B. Langdahl, Treatment of postmenopausal osteoporosis with bone-forming and antiresorptive treatments: combined and sequential approaches. Bone 139, 115516 (2020). https://doi.org/10.1016/j.bone.2020.115516

    Article  CAS  PubMed  Google Scholar 

  4. M. Lorentzon, Treating osteoporosis to prevent fractures: current concepts and future developments. J. Intern. Med. 285(4), 381–394 (2019). https://doi.org/10.1111/joim.12873

    Article  PubMed  Google Scholar 

  5. S.D. Mistry, G.N. Woods, S. Sigurdsson, S.K. Ewing, T.F. Hue, G. Eiriksdottir, K. Xu, J.F. Hilton, D.M. Kado, V. Gudnason, T.B. Harris, C.J. Rosen, T.F. Lang, X. Li, A.V. Schwartz, Sex hormones are negatively associated with vertebral bone marrow fat. Bone 108, 20–24 (2018). https://doi.org/10.1016/j.bone.2017.12.009

    Article  CAS  PubMed  Google Scholar 

  6. Milisic, L., Vegar-Zubovic, S., Valjevac, A.: Bone marrow adiposity is inversely associated with bone mineral density in postmenopausal females. Med. Glas (Zenica). 17(1), (2020). https://doi.org/10.17392/1053-20.

  7. K.M. Beekman, M. Zwaagstra, A.G. Veldhuis-Vlug, H.W. van Essen, M. den Heijer, M. Maas, G. Kerckhofs, T.N. Parac-Vogt, P.H. Bisschop, N. Bravenboer, Ovariectomy increases RANKL protein expression in bone marrow adipocytes of C3H/HeJ mice. Am. J. Physiol. Endocrinol. Metab. 317(6), E1050–E1054 (2019). https://doi.org/10.1152/ajpendo.00142.2019

    Article  CAS  PubMed  Google Scholar 

  8. S. Li, H. Jiang, B. Wang, M. Gu, N. Zhang, W. Liang, Y. Wang, Effect of leptin on marrow adiposity in ovariectomized rabbits assessed by proton magnetic resonance spectroscopy. J. Comput. Assist. Tomogr. 42(4), 588–593 (2018). https://doi.org/10.1097/RCT.0000000000000725

    Article  PubMed  Google Scholar 

  9. E.J. Limonard, A.G. Veldhuis-Vlug, L. van Dussen, J.H. Runge, M.W. Tanck, E. Endert, A.C. Heijboer, E. Fliers, C.E. Hollak, E.M. Akkerman, P.H. Bisschop, Short-term effect of estrogen on human bone marrow fat. J. Bone Min. Res. 30(11), 2058–2066 (2015). https://doi.org/10.1002/jbmr.2557

    Article  CAS  Google Scholar 

  10. A. Elbaz, D. Rivas, G. Duque, Effect of estrogens on bone marrow adipogenesis and Sirt1 in aging C57BL/6J mice. Biogerontology 10(6), 747–755 (2009). https://doi.org/10.1007/s10522-009-9221-7

    Article  CAS  PubMed  Google Scholar 

  11. K.M. Beekman, A.G. Veldhuis-Vlug, M. den Heijer, M. Maas, A.M. Oleksik, M.W. Tanck, S.M. Ott, R.J. van ‘t Hof, P. Lips, P.H. Bisschop, N. Bravenboer, The effect of raloxifene on bone marrow adipose tissue and bone turnover in postmenopausal women with osteoporosis. Bone 118, 62–68 (2019). https://doi.org/10.1016/j.bone.2017.10.011

    Article  CAS  PubMed  Google Scholar 

  12. Y. Yang, X. Luo, F. Yan, Z. Jiang, Y. Li, C. Fang, J. Shen, Effect of zoledronic acid on vertebral marrow adiposity in postmenopausal osteoporosis assessed by MR spectroscopy. Skelet. Radio. 44(10), 1499–1505 (2015). https://doi.org/10.1007/s00256-015-2200-y

    Article  Google Scholar 

  13. Y. Yang, X. Luo, X. Xie, F. Yan, G. Chen, W. Zhao, Z. Jiang, C. Fang, J. Shen, Influences of teriparatide administration on marrow fat content in postmenopausal osteopenic women using MR spectroscopy. Climacteric 19(3), 285–291 (2016). https://doi.org/10.3109/13697137.2015.1126576

    Article  CAS  PubMed  Google Scholar 

  14. de Paula, F.J.A., Rosen, C.J.: Marrow adipocytes: origin, structure, and function. Annu. Rev. Physiol. (2019). https://doi.org/10.1146/annurev-physiol-021119-034513

  15. W.P. Cawthorn, E.L. Scheller, B.S. Learman, S.D. Parlee, B.R. Simon, H. Mori, X. Ning, A.J. Bree, B. Schell, D.T. Broome, S.S. Soliman, J.L. DelProposto, C.N. Lumeng, A. Mitra, S.V. Pandit, K.A. Gallagher, J.D. Miller, V. Krishnan, S.K. Hui, M.A. Bredella, P.K. Fazeli, A. Klibanski, M.C. Horowitz, C.J. Rosen, O.A. MacDougald, Bone marrow adipose tissue is an endocrine organ that contributes to increased circulating adiponectin during caloric restriction. Cell Metab. 20(2), 368–375 (2014). https://doi.org/10.1016/j.cmet.2014.06.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. M. Tencerova, F. Figeac, N. Ditzel, H. Taipaleenmaki, T.K. Nielsen, M. Kassem, High-fat diet-induced obesity promotes expansion of bone marrow adipose tissue and impairs skeletal stem cell functions in mice. J. Bone Min. Res. 33(6), 1154–1165 (2018). https://doi.org/10.1002/jbmr.3408

    Article  CAS  Google Scholar 

  17. E.L. Scheller, N. Troiano, J.N. Vanhoutan, M.A. Bouxsein, J.A. Fretz, Y. Xi, T. Nelson, G. Katz, R. Berry, C.D. Church, C.R. Doucette, M.S. Rodeheffer, O.A. Macdougald, C.J. Rosen, M.C. Horowitz, Use of osmium tetroxide staining with microcomputerized tomography to visualize and quantify bone marrow adipose tissue in vivo. Methods Enzymol. 537, 123–139 (2014). https://doi.org/10.1016/B978-0-12-411619-1.00007-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Y. Fan, J.I. Hanai, P.T. Le, R. Bi, D. Maridas, V. DeMambro, C.A. Figueroa, S. Kir, X. Zhou, M. Mannstadt, R. Baron, R.T. Bronson, M.C. Horowitz, J.Y. Wu, J.P. Bilezikian, D.W. Dempster, C.J. Rosen, B. Lanske, Parathyroid hormone directs bone marrow mesenchymal cell fate. Cell Metab. 25(3), 661–672 (2017). https://doi.org/10.1016/j.cmet.2017.01.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. F. Liu, Y. Yuan, L. Bai, L. Yuan, L. Li, J. Liu, Y. Chen, Y. Lu, J. Cheng, J. Zhang, LRRc17 controls BMSC senescence via mitophagy and inhibits the therapeutic effect of BMSCs on ovariectomy-induced bone loss. Redox Biol. 43, 101963 (2021). https://doi.org/10.1016/j.redox.2021.101963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. A. Rauch, A.K. Haakonsson, J.G.S. Madsen, M. Larsen, I. Forss, M.R. Madsen, E.L. Van Hauwaert, C. Wiwie, N.Z. Jespersen, M. Tencerova, R. Nielsen, B.D. Larsen, R. Rottger, J. Baumbach, C. Scheele, M. Kassem, S. Mandrup, Osteogenesis depends on commissioning of a network of stem cell transcription factors that act as repressors of adipogenesis. Nat. Genet. 51(4), 716–727 (2019). https://doi.org/10.1038/s41588-019-0359-1

    Article  CAS  PubMed  Google Scholar 

  21. N. Saleh, N.A. Nassef, M.K. Shawky, M.I. Elshishiny, H.A. Saleh, Novel approach for pathogenesis of osteoporosis in ovariectomized rats as a model of postmenopausal osteoporosis. Exp. Gerontol. 137, 110935 (2020). https://doi.org/10.1016/j.exger.2020.110935

    Article  CAS  PubMed  Google Scholar 

  22. Woods, G.N., Ewing, S.K., Sigurdsson, S., Kado, D.M., Eiriksdottir, G., Gudnason, V., Hue, T.F., Lang, T.F., Vittinghoff, E., Harris, T.B., Rosen, C., Xu, K., Li, X., Schwartz, A.V.: Greater bone marrow adiposity predicts bone loss in older women. J. Bone Miner. Res. (2019). https://doi.org/10.1002/jbmr.3895

  23. D. Krishnamoorthy, D.M. Frechette, B.J. Adler, D.E. Green, M.E. Chan, C.T. Rubin, Marrow adipogenesis and bone loss that parallels estrogen deficiency is slowed by low-intensity mechanical signals. Osteoporos. Int. 27(2), 747–756 (2016). https://doi.org/10.1007/s00198-015-3289-5

    Article  CAS  PubMed  Google Scholar 

  24. Q. Liu, X. Zhang, Y. Jiao, X. Liu, Y. Wang, S.L. Li, W. Zhang, F.M. Chen, Y. Ding, C. Jiang, Z. Jin, In vitro cell behaviors of bone mesenchymal stem cells derived from normal and postmenopausal osteoporotic rats. Int. J. Mol. Med. 41(2), 669–678 (2018). https://doi.org/10.3892/ijmm.2017.3280

    Article  CAS  PubMed  Google Scholar 

  25. B. Gao, Q. Huang, Q. Jie, L. Wang, H.Y. Zhang, J. Liu, L. Yang, Z.J. Luo, Dose-response estrogen promotes osteogenic differentiation via GPR40 (FFAR1) in murine BMMSCs. Biochimie 110, 36–44 (2015). https://doi.org/10.1016/j.biochi.2015.01.001

    Article  CAS  PubMed  Google Scholar 

  26. Puolakkainen, T., Rummukainen, P., Pihala-Nieminen, V., Ritvos, O., Savontaus, E., Kiviranta, R.: Treatment with soluble activin Type IIB receptor ameliorates ovariectomy-induced bone loss and fat gain in mice. Calcif. Tissue Int. (2022). https://doi.org/10.1007/s00223-021-00934-0

  27. J. Medina-Contreras, R. Villalobos-Molina, A. Zarain-Herzberg, J. Balderas-Villalobos, Ovariectomized rodents as a menopausal metabolic syndrome model. A minireview. Mol. Cell Biochem. 475(1-2), 261–276 (2020). https://doi.org/10.1007/s11010-020-03879-4

    Article  CAS  PubMed  Google Scholar 

  28. Sharma, D.K., Anderson, P.H., Morris, H.A., Clifton, P.M.: Visceral fat is a negative determinant of bone health in obese postmenopausal women. Int. J. Environ. Res. Public Health 17(11), (2020). https://doi.org/10.3390/ijerph17113996

  29. C.T. Liu, K.E. Broe, Y. Zhou, S.K. Boyd, L.A. Cupples, M.T. Hannan, E. Lim, R.R. McLean, E.J. Samelson, M.L. Bouxsein, D.P. Kiel, Visceral adipose tissue is associated with bone microarchitecture in the framingham osteoporosis study. J. Bone Miner. Res. 32(1), 143–150 (2017). https://doi.org/10.1002/jbmr.2931

    Article  CAS  PubMed  Google Scholar 

  30. J. Pfeilschifter, R. Koditz, M. Pfohl, H. Schatz, Changes in proinflammatory cytokine activity after menopause. Endocr. Rev. 23(1), 90–119 (2002). https://doi.org/10.1210/edrv.23.1.0456

    Article  CAS  PubMed  Google Scholar 

  31. S. Almuraikhy, W. Kafienah, M. Bashah, I. Diboun, M. Jaganjac, F. Al-Khelaifi, H. Abdesselem, N.A. Mazloum, M. Alsayrafi, V. Mohamed-Ali, M.A. Elrayess, Interleukin-6 induces impairment in human subcutaneous adipogenesis in obesity-associated insulin resistance. Diabetologia 59(11), 2406–2416 (2016). https://doi.org/10.1007/s00125-016-4031-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. J.R. Acosta, I. Douagi, D.P. Andersson, J. Backdahl, M. Ryden, P. Arner, J. Laurencikiene, Increased fat cell size: a major phenotype of subcutaneous white adipose tissue in non-obese individuals with type 2 diabetes. Diabetologia 59(3), 560–570 (2016). https://doi.org/10.1007/s00125-015-3810-6

    Article  CAS  PubMed  Google Scholar 

  33. M. Tencerova, M. Frost, F. Figeac, T.K. Nielsen, D. Ali, J.L. Lauterlein, T.L. Andersen, A.K. Haakonsson, A. Rauch, J.S. Madsen, C. Ejersted, K. Hojlund, M. Kassem, Obesity-associated hypermetabolism and accelerated senescence of bone marrow stromal stem cells suggest a potential mechanism for bone fragility. Cell Rep. 27(7), 2050–2062.e6 (2019). https://doi.org/10.1016/j.celrep.2019.04.066

    Article  CAS  PubMed  Google Scholar 

  34. Zou, W., Rohatgi, N., Brestoff, J.R., Li, Y., Barve, R.A., Tycksen, E., Kim, Y., Silva, M.J., Teitelbaum, S.L.: Ablation of fat cells in adult mice induces massive bone gain. Cell Metab. (2020). https://doi.org/10.1016/j.cmet.2020.09.011

  35. Yu, W., Zhong, L., Yao, L., Wei, Y., Gui, T., Li, Z., Kim, H., Holdreith, N., Jiang, X., Tong, W., Dyment, N., Liu, X.S., Yang, S., Choi, Y., Ahn, J., Qin, L.: Bone marrow adipogenic lineage precursors promote osteoclastogenesis in bone remodeling and pathologic bone loss. J. Clin. Invest. 131(2), (2021). https://doi.org/10.1172/JCI140214

  36. S. Takeshita, T. Fumoto, Y. Naoe, K. Ikeda, Age-related marrow adipogenesis is linked to increased expression of RANKL. J. Biol. Chem. 289(24), 16699–16710 (2014). https://doi.org/10.1074/jbc.M114.547919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. D. Ferland-McCollough, D. Maselli, G. Spinetti, M. Sambataro, N. Sullivan, A. Blom, P. Madeddu, MCP-1 feedback loop between adipocytes and mesenchymal stromal cells causes fat accumulation and contributes to hematopoietic stem cell rarefaction in the bone marrow of patients with diabetes. Diabetes 67(7), 1380–1394 (2018). https://doi.org/10.2337/db18-0044

    Article  CAS  PubMed  Google Scholar 

  38. S. Zhu, H. He, C. Gao, G. Luo, Y. Xie, H. Wang, L. Tian, X. Chen, X. Yu, C. He, Ovariectomy-induced bone loss in TNFalpha and IL6 gene knockout mice is regulated by different mechanisms. J. Mol. Endocrinol. 60(3), 185–198 (2018). https://doi.org/10.1530/JME-17-0218

    Article  CAS  PubMed  Google Scholar 

  39. L. Thommesen, A.K. Stunes, M. Monjo, K. Grosvik, M.V. Tamburstuen, E. Kjobli, S.P. Lyngstadaas, J.E. Reseland, U. Syversen, Expression and regulation of resistin in osteoblasts and osteoclasts indicate a role in bone metabolism. J. Cell. Biochem. 99(3), 824–834 (2006). https://doi.org/10.1002/jcb.20915

    Article  CAS  PubMed  Google Scholar 

  40. S. Muruganandan, H.J. Dranse, J.L. Rourke, N.M. McMullen, C.J. Sinal, Chemerin neutralization blocks hematopoietic stem cell osteoclastogenesis. Stem Cells 31(10), 2172–2182 (2013). https://doi.org/10.1002/stem.1450

    Article  CAS  PubMed  Google Scholar 

  41. S. Muruganandan, A.A. Roman, C.J. Sinal, Role of chemerin/CMKLR1 signaling in adipogenesis and osteoblastogenesis of bone marrow stem cells. J. Bone Min. Res. 25(2), 222–234 (2010). https://doi.org/10.1359/jbmr.091106

    Article  CAS  Google Scholar 

  42. J. Li, X. Chen, L. Lu, X. Yu, The relationship between bone marrow adipose tissue and bone metabolism in postmenopausal osteoporosis. Cytokine Growth Factor Rev. 52, 88–98 (2020). https://doi.org/10.1016/j.cytogfr.2020.02.003

    Article  CAS  PubMed  Google Scholar 

  43. B. Burguera, L.C. Hofbauer, T. Thomas, F. Gori, G.L. Evans, S. Khosla, B.L. Riggs, R.T. Turner, Leptin reduces ovariectomy-induced bone loss in rats. Endocrinology 142(8), 3546–3553 (2001). https://doi.org/10.1210/endo.142.8.8346

    Article  CAS  PubMed  Google Scholar 

  44. C.J. Li, Y. Xiao, M. Yang, T. Su, X. Sun, Q. Guo, Y. Huang, X.H. Luo, Long noncoding RNA Bmncr regulates mesenchymal stem cell fate during skeletal aging. J. Clin. Investig. 128(12), 5251–5266 (2018). https://doi.org/10.1172/JCI99044

    Article  PubMed  PubMed Central  Google Scholar 

  45. Zhang, X., Robles, H., Magee, K.L., Lorenz, M.R., Wang, Z., Harris, C.A., Craft, C.S., Scheller, E.L.: A bone-specific adipogenesis pathway in fat-free mice defines key origins and adaptations of bone marrow adipocytes with age and disease. eLife. 10, (2021). https://doi.org/10.7554/eLife.66275

  46. U.T. Iwaniec, R.T. Turner, Failure to generate bone marrow adipocytes does not protect mice from ovariectomy-induced osteopenia. Bone 53(1), 145–153 (2013). https://doi.org/10.1016/j.bone.2012.11.034

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 82273294); the Science and Technology Department of Sichuan Province (2022YFS0136); the Chengdu Bureau of Science and Technology (2022-YF05-01316-SN); the National Natural Science Foundation of China (No.82204847); Key Research and Development Project of Science and Technology Department of Sichuan Province (2023YFS0332); and the 1.3.5 project for discipline of excellence, West China Hospital, Sichuan University (No. 2020HXFH008, No. ZYJC18003).

Author contributions

X.Y designed this research. J.L., L.L., L.L., C.W., Y.X. and L.T. were responsible for the experiments. Among them, J.L., L.L., L.L. and C.W. were in charge of the animal experiments, cellular experiments, and molecular experiments. Y.X. and L.T. were mainly responsible for the histopathological part. J.L., L.L., H.L. and X.Y. were responsible for the revision of the whole article. J.L. and L.L. contributed equally to this work. All authors contributed to the article and approved the submitted version.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xijie Yu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

These authors contributed equally: Jiao Li, Lingyun Lu

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Lu, L., Liu, L. et al. The unique role of bone marrow adipose tissue in ovariectomy-induced bone loss in mice. Endocrine 83, 77–91 (2024). https://doi.org/10.1007/s12020-023-03504-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-023-03504-6

Keywords

Navigation