Skip to main content
Log in

Combination of Omega-3 Fatty Acids, Lithium, and Aripiprazole Reduces Oxidative Stress in Brain of Mice with Mania

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Manic episode in bipolar disorder (BD) was evaluated in the present study with supplementation of omega-3 fatty acids in combination with aripiprazole and lithium on methylphenidate (MPD)-induced manic mice model. Administration of MPD 5 mg/kg bw intraperitoneally (i.p.) caused increase in oxidative stress in mice brain. To retract this effect, supplementation of omega-3 fatty acids 1.5 ml/kg (p.o.), aripiprazole 1.5 mg/kg bw (i.p.), and lithium 50 mg/kg bw (p.o) were given to mice. Omega-3 fatty acids alone and in combination with aripiprazole- and lithium-treated groups significantly reduced the levels of superoxide dismutase (SOD), catalase (CAT), and lipid peroxidation products (thiobarbituric acid reactive substances) in the brain. MPD treatment significantly decreased the reduced glutathione (GSH) level and glutathione peroxidase (GPx) activity, and they were restored by supplementation of omega-3 fatty acids with aripiprazole and lithium. There is no remarkable difference in the effect of creatine kinase (CK) activity between MPD-induced manic model and the treatment groups. Therefore, our results demonstrate that oxidative stress imbalance and mild insignificant CK alterations induced by administration of MPD can be restored back to normal physiological levels through omega-3 fatty acids combined with lithium and aripiprazole that attributes to effective prevention against mania in adult male Swiss albino mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dennehy EB, Marangell LB, Allen MH et al (2011) Suicide and suicide attempts in the systematic treatment enhancement program for bipolar disorder (STEP-BD). J Affect Disord 133:423–427

    Article  PubMed Central  PubMed  Google Scholar 

  2. Einat H (2006) Modeling facets of mania: new directions related to the notion of endophenotypes. J Psychopharmacol 20:714–722

    Article  PubMed  Google Scholar 

  3. Fiorino DF, Phillips AG (1999) Facilitation of sexual behavior and enhanced dopamine efflux in the nucleus accumbens of male rats after D-amphetamine-induced behavioral sensitization. J Neurosci 19:456–463

    CAS  PubMed  Google Scholar 

  4. Macêdo DS, De Lucena DF, Queiroz AIG et al (2013) Effects of lithium on oxidative stress and behavioral alterations induced by lisdexamfetamine dimesylate: relevance as an animal model of mania. Prog Neuropsychopharmacol Biol Psychiatry 43:230–237

    Article  PubMed  Google Scholar 

  5. Yao JK, Reddy RD, Van Kammen DP (2001) Oxidative damage and schizophrenia: an overview of the evidence and its therapeutic implications. CNS Drugs 15:287–310

    Article  CAS  PubMed  Google Scholar 

  6. Ranjekar PK, Hinge A, Hegde MV et al (2003) Decreased antioxidant enzymes and membrane essential polyunsaturated fatty acids in schizophrenic and bipolar mood disorder patients. Psychiatry Res 121:109–122

    Article  CAS  PubMed  Google Scholar 

  7. Martins MR, Reinke A, Petronilho FC et al (2006) Methylphenidate treatment induces oxidative stress in young rat brain. Brain Res 1078:189–197

    CAS  PubMed  Google Scholar 

  8. Reddy R, Sahebarao MP, Mukherjee S, Murthy JN (1991) Enzymes of the antioxidant defense system in chronic schizophrenic patients. Biol Psychiatry 30:409–312

    Article  CAS  PubMed  Google Scholar 

  9. Machado-Vieira R, Andreazza AC, Viale IC et al (2007) Oxidative stress parameters in unmedicated and treated bipolar subjects during initial manic episode: a possible role for lithium antioxidant effects. Neurosci Lett 421:33–36

    Article  CAS  PubMed  Google Scholar 

  10. Frey BN, Valvassori SS, Réus GZ et al (2006) Effects of lithium and valproate on amphetamine-induced oxidative stress generation in an animal model of mania. J Psychiatry Neurosci 31:326–332

    PubMed Central  PubMed  Google Scholar 

  11. Peet M, Laugharne J, Rangarajan N, Reynolds GP (1993) Tardive dyskinesia, lipid peroxidation, and sustained amelioration with vitamin E treatment. Int Clin Psychopharmacol 8:151–153

    Article  CAS  PubMed  Google Scholar 

  12. Reinke A, Martins MR, Lima MS et al (2004) Haloperidol and clozapine, but not olanzapine, induces oxidative stress in rat brain. Neurosci Lett 372:157–160

    Article  CAS  PubMed  Google Scholar 

  13. Eren I, Naziroğlu M, Demirdaş A (2007) Protective effects of lamotrigine, aripiprazole and escitalopram on depression-induced oxidative stress in rat brain. Neurochem Res 32(7):1188–1195

    Article  CAS  PubMed  Google Scholar 

  14. Nazıroğlu M, Yürekli VA (2013) Effects of antiepileptic drugs on antioxidant and oxidant molecular pathways: focus on trace elements. Cell Mol Neurobiol 33:589–599

    Article  PubMed  Google Scholar 

  15. Kato T, Kato N (2000) Mitochondrial dysfunction in bipolar disorder. Bipolar Disord 2:180–190

    Article  CAS  PubMed  Google Scholar 

  16. Aksenov M, Aksenov M, Butterfield DA, Markesbery WR (2000) Oxidative modification of creatine kinase BB in Alzheimer’s disease brain. J Neurochem 74:2520–2527

    Article  CAS  PubMed  Google Scholar 

  17. Streck EL, Amboni G, Scaini G et al (2008) Brain creatine kinase activity in an animal model of mania. Life Sci 82:424–429

    Article  CAS  PubMed  Google Scholar 

  18. Morris MC, Evans DA, Bienias JL et al (2003) Consumption of fish and n-3 fatty acids and risk of incident Alzheimer disease. Arch Neurol 60:940–946

    Article  PubMed  Google Scholar 

  19. Kalmijn S, van Boxtel MP, Verschuren OM et al (2004) Dietary intake of fatty acids and fish in relation to cognitive performance at middle age. Neurology 62:275–280

    Article  CAS  PubMed  Google Scholar 

  20. Arunagiri P, Rajeshwaran K, Shanthakumar J, Balamurugan E (2014) Supplementation of omega-3 fatty acids with aripiprazole and lithium lessens methylphenidate induced manic behavior in Swiss albino mice. PharmaNutrition 2:26–32

    Article  CAS  Google Scholar 

  21. Barbosa FJ, Hesse B, de Almeida RB et al (2011) Magnesium sulfate and sodium valproate block methylphenidate-induced hyperlocomotion, an animal model of mania. Pharmacol Rep 63:64–70

    Article  CAS  PubMed  Google Scholar 

  22. Barcelos RCS, Benvegnú DM, Boufleur N et al (2009) Effects of omega-3 essential fatty acids (omega-3 EFAs) on motor disorders and memory dysfunction typical neuroleptic-induced: behavioral and biochemical parameter. Neurotox Res 17:228–237

    Article  PubMed  Google Scholar 

  23. Yang P, Singhal N, Modi G, Swann A, Dafny N (2001) Effects of lithium chloride on induction and expression of methylphenidate sensitization. Eur J Pharmacol 426:65–72

    Article  CAS  PubMed  Google Scholar 

  24. Mavrikaki M, Nomikos GG, Panagis G (2010) Efficacy of the atypical antipsychotic aripiprazole in d-amphetamine-based preclinical models of mania. Int J Neuropsychopharmacol 13:541–548

    Article  CAS  PubMed  Google Scholar 

  25. Niehaus WG, Samuelsson B (1968) Formation of malondialdehyde from phospholipid arachidonate during microsomal lipid peroxidation. Eur J Biochem 61:126–130

    Article  Google Scholar 

  26. Kakkar ZYP, Das B, Viswanathan PN (1984) A modified spectrophotometric assay of superoxide dismutase. Indian J Biochem Biophys 21:130–132

    CAS  PubMed  Google Scholar 

  27. Sinha KA (1972) Colorimetric assay of catalase. Anal Biochem 47:389–394

    Article  CAS  PubMed  Google Scholar 

  28. Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–77

    Article  CAS  PubMed  Google Scholar 

  29. Rotruck JT, Pope AL, Ganther HE, Swanson AB, Hafeman DG, Hoekstra WG (1973) Selenium: biochemical role as a component of glutathione peroxidase. Science 179:588–590

    Article  CAS  PubMed  Google Scholar 

  30. Hughes BP (1962) A method for estimation of serum creatine kinase and its use in comparing creatine kinase and aldolase activity in normal and pathologic sera. Clin Chim Acta 7:597–604

    Article  CAS  PubMed  Google Scholar 

  31. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(265):e75

    Google Scholar 

  32. Gomes KM, Inacio CG, Valvassori SS et al (2009) Superoxide production after acute and chronic treatment with methylphenidate in young and adult rats. Neurosci Lett 465:95–98

    Article  CAS  PubMed  Google Scholar 

  33. Miyazaki I, Asanuma M (2008) Dopaminergic neuron-specific oxidative stress caused by dopamine itself. Acta Med Okayama 62:141–150

    CAS  PubMed  Google Scholar 

  34. Sagara Y (1998) Induction of reactive oxygen species in neurons by haloperidol. J Neurochem 71:1002–1012

    Article  CAS  PubMed  Google Scholar 

  35. Sadasivan S, Pond BB, Pani AK et al (2012) Methylphenidate exposure induces dopamine neuron loss and activation of microglia in the basal ganglia of mice. PLoS One 7(5)

  36. Brüning CA, Prigol M, Luchese C et al (2012) Diphenyl diselenide ameliorates behavioral and oxidative parameters in an animal model of mania induced by ouabain. Prog Neuropsychopharmacol Biol Psychiatry 38:168–174

    Article  PubMed  Google Scholar 

  37. Jerlhag E (2008) The antipsychotic aripiprazole antagonizes the ethanol and amphetamine-induced locomotor stimulation in mice. Alcohol 42:123–127

    Article  CAS  PubMed  Google Scholar 

  38. Akpinar A, Uğuz AC, Nazıroğlu M (2014) Agomelatine and duloxetine synergistically modulates apoptotic pathway by inhibiting oxidative stress triggered intracellular calcium entry in neuronal PC12 cells: role of TRPM2 and voltage-gated calcium channels. J Membrane Biol 247:451–459

    Article  CAS  Google Scholar 

  39. Nazıroğlu M, Kutluhan S, Yılmaz M (2008) Selenium and topiramate modulates brain microsomal oxidative stress values, Ca2 + -ATPase activity, and EEG records in pentylentetrazol-induced seizures in rats. J Membr Biol 225:39–49

    Article  PubMed  Google Scholar 

  40. Altınkılıç S, Nazıroğlu M, Uğuz AC, Özcankaya R (2010) Fish oil and antipsychotic drug risperidone modulate oxidative stress in PC12 cell membranes through regulation of cytosolic calcium ion release and antioxidant system. J Membrane Biol 235:211–218

    Article  Google Scholar 

  41. Zhang XY, Tan YL, Cao LY et al (2006) Antioxidant enzymes and lipid peroxidation in different forms of schizophrenia treated with typical and atypical antipsychotics. Schizophr Res 81:291–300

    Article  PubMed  Google Scholar 

  42. Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2002) Molecular biology of the cell, 4th edn. Garland Science, New York

    Google Scholar 

  43. Le-Niculescu H, Case NJ, Hulvershorn L et al (2011) Convergent functional genomic studies of omega-3 fatty acids in stress reactivity, bipolar disorder and alcoholism. Trans Psychiatr 4:e4–e24

    Article  Google Scholar 

  44. Dager SR, Friedman SD, Parow A et al (2004) Brain metabolic alterations in medication-free patients with bipolar disorder. Arch Gen Psychiat 61:450–458

    Article  CAS  PubMed  Google Scholar 

  45. Feier G, Valvassori SS, Varela RB et al (2013) Lithium and valproate modulate energy metabolism in an animal model of mania induced by methamphetamine. Pharmacol Biochem Behav 103:589–596

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Annamalai University for the financial assistance in the form of “University Research Fellowship” to Mr. P. Arunagiri.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elumalai Balamurugan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arunagiri, P., Rajeshwaran, K., Shanthakumar, J. et al. Combination of Omega-3 Fatty Acids, Lithium, and Aripiprazole Reduces Oxidative Stress in Brain of Mice with Mania. Biol Trace Elem Res 160, 409–417 (2014). https://doi.org/10.1007/s12011-014-0067-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-014-0067-8

Keywords

Navigation