Skip to main content

Advertisement

Log in

Effects of Antiepileptic Drugs on Antioxidant and Oxidant Molecular Pathways: Focus on Trace Elements

  • Review Paper
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Current reports on trace elements, oxidative stress, and the effect of antiepileptic drugs are poor and controversial. We aimed to review effects of most common used antiepileptics on antioxidant, trace element, calcium ion (Ca2+) influx, and oxidant systems in human and experimental animal models. Observations of lower blood or tissue antioxidant levels in epileptic patients and animals compared to controls in recent publications may commonly support the proposed crucial role of antioxidants in the pathogenesis of epilepsy. Effects of old and new antiepileptics on reactive oxygen species (ROS) production in epilepsy are controversial. The old antiepileptic drugs like valproic acid, phenytoin, and carbamazepine induced ROS overproduction, while new epileptic drugs (e.g., topiramate and zonisamide) induced scavenger effects on over production of ROS in human and animals. Antioxidant trace element levels such as selenium, copper, and zinc were generally low in the blood of epileptic patients, indicating trace element deficiencies in the pathogenesis of epilepsy. Recent papers indicate that selenium with/without topiramate administration in human and animals decreased seizure levels, although antioxidant values were increased. Recent studies also reported that sustained depolarization of mitochondrial membranes, enhanced ROS production and Ca2+ influx may be modulated by topiramate. In conclusion, there is a large number of recent studies about the role of antioxidants or neuroprotectants in clinical and experimental models of epilepsy. New antiepileptic drugs are more prone to restore antioxidant redox systems in brain and neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

AMPA:

Alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid

Cu:

Copper

GSH:

Glutathione

GSH-Px:

Glutathione peroxidase

MDA:

Malondialdehyde

NFkB:

Nuclear factor kappa B

NMDA:

N-methyl-d-aspartate

PTZ:

Pentylenetetrazole

ROS:

Reactive oxygen species

Se:

Selenium

SOD:

Superoxide dismutase

References

  • Agarwal NB, Agarwal NK, Mediratta PK, Sharma KK (2011) Effect of lamotrigine, oxcarbazepine and topiramate on cognitive functions and oxidative stress in PTZ-kindled mice. Seizure 20(3):257–262

    Article  PubMed  Google Scholar 

  • Amiri M, Farzin L, Moassesi ME, Sajadi F (2010) Serum trace element levels in febrile convulsion. Biol Trace Elem Res 135(1–3):38–44

    Article  PubMed  CAS  Google Scholar 

  • Andre VM, Cepeda C, Vinters HV, Huynh M, Mathern GW, Levine MS (2010) Interneurons, GABAA currents, and subunit composition of the GABAA receptor in type I and type II cortical dysplasia. Epilepsia 51(Suppl 3):166–170

    Article  PubMed  CAS  Google Scholar 

  • Arakawa M, Ito Y (2007) N-acetylcysteine and neurodegenerative diseases: basic and clinical pharmacology. Cerebellum 6(4):308–314

    Article  PubMed  CAS  Google Scholar 

  • Armagan A, Kutluhan S, Yilmaz M, Yilmaz N, Bulbul M, Vural H, Soyupek S, Naziroglu M (2008) Topiramate and vitamin e modulate antioxidant enzyme activities, nitric oxide and lipid peroxidation levels in pentylenetetrazol-induced nephrotoxicity in rats. Basic Clin Pharmacol Toxicol 103(2):166–170

    Article  PubMed  CAS  Google Scholar 

  • Arora T, Mehta AK, Sharma KK, Mediratta PK, Banerjee BD, Garg GR, Sharma AK (2010) Effect of carbamazepine and lamotrigine on cognitive function and oxidative stress in brain during chemical epileptogenesis in rats. Basic Clin Pharmacol Toxicol 106:372–377

    Article  PubMed  CAS  Google Scholar 

  • Asanuma M, Miyazaki I, Diaz-Corrales FJ, Kimoto N, Kikkawa Y, Takeshima M, Miyoshi K, Murata M (2010) Neuroprotective effects of zonisamide target astrocyte. Ann Neurol 67(2):239–249

    Article  PubMed  CAS  Google Scholar 

  • Ashrafi MR, Shabanian R, Abbaskhanian A, Nasirian A, Ghofrani M, Mohammadi M, Zamani GR, Kayhanidoost Z, Ebrahimi S, Pourpak Z (2007a) Selenium and intractable epilepsy: is there any correlation? Pediatr Neurol 36(1):25–29

    Article  PubMed  Google Scholar 

  • Ashrafi MR, Shams S, Nouri M, Mohseni M, Shabanian R, Yekaninejad MS, Chegini N, Khodadad A, Safaralizadeh R (2007b) A probable causative factor for an old problem: selenium and glutathione peroxidase appear to play important roles in epilepsy pathogenesis. Epilepsia 48(9):1750–1755

    Article  PubMed  CAS  Google Scholar 

  • Azam F, Prasad MV, Thangavel N (2012) Targeting oxidative stress component in the therapeutics of epilepsy. Curr Top Med Chem 12:994–1007

    Article  PubMed  CAS  Google Scholar 

  • Cardenas-Rodriguez N, Coballase-Urrutia E, Huerta-Gertrudis B, Garcia-Cruz ME, Pedraza-Chaverri J, Coria-Jimenez R, Bandala C, Ruiz-Garcia M (2012) Antioxidant activity of topiramate: an antiepileptic agent. Neurol Sci. doi:10.1007/s10072-012-1127-5

    PubMed  Google Scholar 

  • Cardile V, Pavone A, Renis M, Maci T, Perciavalle V (2001) Effects of Gabapentin and Topiramate in primary rat astrocyte cultures. NeuroReport 12(8):1705–1708

    Article  PubMed  CAS  Google Scholar 

  • Castano A, Ayala A, Rodriguez-Gomez JA, Herrera AJ, Cano J, Machado A (1997) Low selenium diet increases the dopamine turnover in prefrontal cortex of the rat. Neurochem Int 30(6):549–555

    Article  PubMed  CAS  Google Scholar 

  • Cengiz M, Yuksel A, Seven M (2000) The effects of carbamazepine and valproic acid on the erythrocyte glutathione, glutathione peroxidase, superoxide dismutase and serum lipid peroxidation in epileptic children. Pharmacol Res 41(4):423–425

    Article  PubMed  CAS  Google Scholar 

  • Chang TK, Abbott FS (2006) Oxidative stress as a mechanism of valproic acid-associated hepatotoxicity. Drug Metab Rev 38(4):627–639

    Article  PubMed  CAS  Google Scholar 

  • Daoud AS, Batieha A, Abu-Ekteish F, Gharaibeh N, Ajlouni S, Hijazi S (2002) Iron status: a possible risk factor for the first febrile seizure. Epilepsia 43(7):740–743

    Article  PubMed  Google Scholar 

  • Delgado-Escueta AV, Horan MP (1980) Phenytoin: biochemical membrane studies. Adv Neurol 27:377–398

    PubMed  CAS  Google Scholar 

  • Espino J, Pariente JA, Rodríguez AB (2012) Oxidative stress and immunosenescence: therapeutic effects of melatonin. Oxid Med Cell Longev 2012:670294. doi:10.1155/2012/670294

    Article  PubMed  Google Scholar 

  • Ekmekcioğlu C, Zodl B, Humpeler S, Zeiner M, Gundacker C, Steffan I. (2008) Ascorbic Acid Mediated Iron Toxicity in Caco-2 Cells: Effects of Different Iron Species Cell Membr, Free Radic Res 2(2): 92–97

    Google Scholar 

  • Ganesh R, Janakiraman L, Meenakshi B (2011) Serum zinc levels are low in children with simple febrile seizures compared with those in children with epileptic seizures and controls. Ann Trop Paediatr 31(4):345–349

    Article  PubMed  CAS  Google Scholar 

  • González A, Granados MP, Pariente JA, Salido GM (2006) H2O2 mobilizes Ca2+ from agonist- and thapsigargin-sensitive and insensitive intracellular stores and stimulates glutamate secretion in rat hippocampal astrocytes. Neurochem Res 31:741–750

    Article  PubMed  Google Scholar 

  • González A, Pariente JA, Salido GM (2007) Ethanol stimulates ROS generation by mitochondria through Ca2+ mobilization and increases GFAP content in rat hippocampal astrocytes. Brain Res 1178:28–37

    Article  PubMed  Google Scholar 

  • Gupta RC, Milatovic D, Dettbarn WD (2001) Depletion of energy metabolites following acetylcholinesterase inhibitor-induced status epilepticus: protection by antioxidants. Neurotoxicology 22(2):271–282

    Article  PubMed  CAS  Google Scholar 

  • Gupta YK, Veerendra Kumar MH, Srivastava AK (2003) Effect of Centella asiatica on pentylenetetrazole-induced kindling, cognition and oxidative stress in rats. Pharmacol Biochem Behav 74(3):579–585

    Article  PubMed  CAS  Google Scholar 

  • Hamed SA, Abdellah MM, El-Melegy N (2004) Blood levels of trace elements, electrolytes, and oxidative stress/antioxidant systems in epileptic patients. J Pharmacol Sci 96(4):465–473

    Article  PubMed  CAS  Google Scholar 

  • Hayashi M (2009) Oxidative stress in developmental brain disorders. Neuropathology 29(1):1–8

    Article  PubMed  Google Scholar 

  • Hellmich HL, Eidson KA, Capra BA, Garcia JM, Boone DR, Hawkins BE, Uchida T, Dewitt DS, Prough DS (2007) Injured Fluoro-Jade-positive hippocampal neurons contain high levels of zinc after traumatic brain injury. Brain Res 1127(1):119–126

    Article  PubMed  CAS  Google Scholar 

  • Herzog AG, Drislane FW, Schomer DL, Pennell PB, Bromfield EB, Dworetzky BA, Farina EL, Frye CA (2005) Differential effects of antiepileptic drugs on sexual function and hormones in men with epilepsy. Neurology 65(7):1016–1020

    Article  PubMed  CAS  Google Scholar 

  • Hirsch LJ, Arif H, Nahm EA, Buchsbaum R, Resor SR Jr, Bazil CW (2008) Cross-sensitivity of skin rashes with antiepileptic drug use. Neurology 71(19):1527–1534

    Article  PubMed  CAS  Google Scholar 

  • Holland KD, Bouley MG, Covey DF, Ferrendelli JA (1993) Alkyl-substituted gamma-butyrolactones act at a distinct site allosterically linked to the TBPS/picrotoxinin site on the GABAA receptor complex. Brain Res 615(1):170–174

    Article  PubMed  CAS  Google Scholar 

  • Jesberger JA, Richardson JS (1991) Oxygen free radicals and brain dysfunction. Int J Neurosci 57(1–2):1–17

    Article  PubMed  CAS  Google Scholar 

  • Kubera M, Budziszewska B, Jaworska-Feil L, Basta-Kaim A, Leskiewicz M, Tetich M, Maes M, Kenis G, Marciniak A, Czuczwar SJ, Jagla G, Nowak W, Lason W (2004) Effect of topiramate on the kainate-induced status epilepticus, lipid peroxidation and immunoreactivity of rats. Pol J Pharmacol 56(5):553–561

    PubMed  CAS  Google Scholar 

  • Kurekci AE, Alpay F, Tanindi S, Gokcay E, Ozcan O, Akin R, Isimer A, Sayal A (1995) Plasma trace element, plasma glutathione peroxidase, and superoxide dismutase levels in epileptic children receiving antiepileptic drug therapy. Epilepsia 36(6):600–604

    Article  PubMed  CAS  Google Scholar 

  • Liang LP, Patel M (2004) Mitochondrial oxidative stress and increased seizure susceptibility in Sod2(−/+) mice. Free Radic Biol Med 36(5):542–554

    Article  PubMed  CAS  Google Scholar 

  • Liu CS, Wu HM, Kao SH, Wei YH (1997) Phenytoin-mediated oxidative stress in serum of female epileptics: a possible pathogenesis in the fetal hydantoin syndrome. Hum Exp Toxicol 16(3):177–181

    Article  PubMed  CAS  Google Scholar 

  • Lukyanetz EA, Shkryl VM, Kostyuk PG (2002) Selective blockade of N-type calcium channels by levetiracetam. Epilepsia 43(1):9–18

    Article  PubMed  CAS  Google Scholar 

  • Mahyar A, Ayazi P, Fallahi M, Javadi A (2010) Correlation between serum selenium level and febrile seizures. Pediatr Neurol 43(5):331–334

    Article  PubMed  Google Scholar 

  • Martinez-Ballesteros C, Pita-Calandre E, Sanchez-Gonzalez Y, Rodriguez-Lopez CM, Agil A (2004) Lipid peroxidation in adult epileptic patients treated with valproic acid. Rev Neurol 38(2):101–106

    PubMed  CAS  Google Scholar 

  • Michoulas A, Tong V, Teng XW, Chang TK, Abbott FS, Farrell K (2006) Oxidative stress in children receiving valproic acid. J Pediatr 149(5):692–696

    Article  PubMed  CAS  Google Scholar 

  • Miller AD, Krauss GL, Hamzeh FM (2004) Improved CNS tolerability following conversion from immediate- to extended-release carbamazepine. Acta Neurol Scand 109(6):374–377

    Article  PubMed  CAS  Google Scholar 

  • Murata M (2004) Novel therapeutic effects of the anti-convulsant, zonisamide, on Parkinson’s disease. Curr Pharm Des 10(6):687–693

    Article  PubMed  CAS  Google Scholar 

  • Muriach M, Lopez-Pedrajas R, Barcia JM, Sanchez-Villarejo MV, Almansa I, Romero FJ (2010) Cocaine causes memory and learning impairments in rats: involvement of nuclear factor kappa B and oxidative stress, and prevention by topiramate. J Neurochem 114(3):675–684

    Article  PubMed  CAS  Google Scholar 

  • Nazıroglu M, Karaoğlu A, Aksoy AO. (2004) Selenium and high dose vitamin E administration protects cisplatin-induced oxidative damage to renal, liver and lens tissues in rats. Toxicology 195(2–3):221–230

    Article  PubMed  Google Scholar 

  • Nazıroglu M (2007) New molecular mechanisms on the activation of TRPM2 channels by oxidative stress and ADP-ribose. Neurochem Res 32(11):1990–2001

    Article  PubMed  Google Scholar 

  • Nazıroglu M (2011) TRPM2 cation channels, oxidative stress and neurological diseases: where are we now? Neurochem Res 36(3):355–366

    Article  PubMed  Google Scholar 

  • Nazıroğlu M. (2012) Molecular role of catalase on oxidative stress-induced Ca(2+) signaling and TRP cation channel activation in nervous system. J Recept Signal Transduct Res. 32(3):134–141

    Google Scholar 

  • Nazıroğlu M, Dikici DM, Dursun S. (2012) Role of oxidative stress and Ca2 signaling on molecular pathways of neuropathic pain in diabetes: focus on TRP channels. Neurochem Res. 37(10):2065–2075

    Google Scholar 

  • Nazıroglu M, Kutluhan S, Yilmaz M (2008) Selenium and topiramate modulates brain microsomal oxidative stress values, Ca2+-ATPase activity, and EEG records in pentylentetrazol-induced seizures in rats. J Membr Biol 225(1–3):39–49

    PubMed  Google Scholar 

  • Nazıroğlu M, Kutluhan S, Uguz AC, Celik O, Bal R, Butterworth PJ (2009) Topiramate and vitamin E modulate the electroencephalographic records, brain microsomal and blood antioxidant redox system in pentylentetrazol-induced seizure of rats. J Membr Biol 229(3):131–140

    Article  PubMed  Google Scholar 

  • Oki G, Wada T, Iba K, Aiki H, Sasaki K, Imai S, Sohma H, Matsumoto K, Yamaguchi M, Fujimiya M, Yamashita T, Kokai Y (2012) Metallothionein deficiency in the injured peripheral nerves of complex regional pain syndrome as revealed by proteomics. Pain 153(3):532–539

    Article  PubMed  CAS  Google Scholar 

  • Oliveira AA, Almeida JP, Freitas RM, Nascimento VS, Aguiar LM, Junior HV, Fonseca FN, Viana GS, Sousa FC, Fonteles MM (2007) Effects of levetiracetam in lipid peroxidation level, nitrite–nitrate formation and antioxidant enzymatic activity in mice brain after pilocarpine-induced seizures. Cell Mol Neurobiol 27(3):395–406

    Article  PubMed  CAS  Google Scholar 

  • Ozmen I, Naziroglu M, Alici HA, Sahin F, Cengiz M, Eren I (2007) Spinal morphine administration reduces the fatty acid contents in spinal cord and brain by increasing oxidative stress. Neurochem Res 32(1):19–25

    Article  PubMed  Google Scholar 

  • Ozolins TR, Siksay DL, Wells PG (1996) Modulation of embryonic glutathione peroxidase activity and phenytoin teratogenicity by dietary deprivation of selenium in CD-1 mice. J Pharmacol Exp Ther 277(2):945–953

    PubMed  CAS  Google Scholar 

  • Oztas B, Akgul S, Seker FB (2007) Gender difference in the influence of antioxidants on the blood–brain barrier permeability during pentylenetetrazol-induced seizures in hyperthermic rat pups. Biol Trace Elem Res 118(1):77–83

    Article  PubMed  CAS  Google Scholar 

  • Pariente JA, Camello C, Camello PJ, Salido GM (2001) Release of calcium from mitochondrial and nonmitochondrial intracellular stores in mouse pancreatic acinar cells by hydrogen peroxide. J Membr Biol 179:27–35

    Article  PubMed  CAS  Google Scholar 

  • Patel MN (2002) Oxidative stress, mitochondrial dysfunction, and epilepsy. Free Radic Res 36(11):1139–1146

    Article  PubMed  CAS  Google Scholar 

  • Patel M (2004) Mitochondrial dysfunction and oxidative stress: cause and consequence of epileptic seizures. Free Radic Biol Med 37(12):1951–1962

    Article  PubMed  CAS  Google Scholar 

  • Poulain P, Margineanu DG (2002) Levetiracetam opposes the action of GABAA antagonists in hypothalamic neurones. Neuropharmacology 42(3):346–352

    Article  PubMed  CAS  Google Scholar 

  • Ramaekers VT, Calomme M, Vanden Berghe D, Makropoulos W (1994) Selenium deficiency triggering intractable seizures. Neuropediatrics 25(4):217–223

    Article  PubMed  CAS  Google Scholar 

  • Rayman MP (2000) The importance of selenium to human health. Lancet 356(9225):233–241

    Article  PubMed  CAS  Google Scholar 

  • Reeta KH, Mehla J, Gupta YK (2009) Curcumin is protective against phenytoin-induced cognitive impairment and oxidative stress in rats. Brain Res 1301:52–60

    Article  PubMed  CAS  Google Scholar 

  • Rowley S, Patel M (2013) Mitochondrial involvement and oxidative stress in temporal lobe epilepsy. Free Radic Biol Med. doi:10.1016/j.freeradbiomed.2013.02.002

    PubMed  Google Scholar 

  • Savaskan NE, Brauer AU, Kuhbacher M, Eyupoglu IY, Kyriakopoulos A, Ninnemann O, Behne D, Nitsch R (2003) Selenium deficiency increases susceptibility to glutamate-induced excitotoxicity. FASEB J 17(1):112–114

    PubMed  CAS  Google Scholar 

  • Schreck R, Meier B, Mannel DN, Droge W, Baeuerle PA (1992) Dithiocarbamates as potent inhibitors of nuclear factor kappa B activation in intact cells. J Exp Med 175(5):1181–1194

    Article  PubMed  CAS  Google Scholar 

  • Schuchmann S, Buchheim K, Meierkord H, Heinemann U (1999) A relative energy failure is associated with low-Mg2+ but not with 4-aminopyridine induced seizure-like events in entorhinal cortex. J Neurophysiol 81(1):399–403

    PubMed  CAS  Google Scholar 

  • Schweizer U, Schomburg L, Savaskan NE (2004) The neurobiology of selenium: lessons from transgenic mice. J Nutr 134:707–710

    PubMed  CAS  Google Scholar 

  • Seven M, Basaran SY, Cengiz M, Unal S, Yuksel A (2012) Deficiency of selenium and zinc as a causative factor for idiopathic intractable epilepsy. Epilepsy Res 104:35–39

    Article  PubMed  Google Scholar 

  • Shin EJ, Jeong JH, Chung YH, Kim WK, Ko KH, Bach JH, Hong JS, Yoneda Y, Kim HC (2011) Role of oxidative stress in epileptic seizures. Neurochem Int 59(2):122–137

    Article  PubMed  CAS  Google Scholar 

  • Solowiej E, Sobaniec W (2003) The effect of antiepileptic drug therapy on antioxidant enzyme activity and serum lipid peroxidation in young patients with epilepsy. Neurol Neurochir Pol 37(5):991–1003

    PubMed  Google Scholar 

  • Stanton PK, Moskal JR (1991) Diphenylhydantoin protects against hypoxia-induced impairment of hippocampal synaptic transmission. Brain Res 546(2):351–354

    Article  PubMed  CAS  Google Scholar 

  • Stettner M, Dehmel T, Mausberg AK, Kohne A, Rose CR, Kieseier BC (2011) Levetiracetam exhibits protective properties on rat Schwann cells in vitro. J Peripher Nerv Syst 16(3):250–260

    Article  PubMed  CAS  Google Scholar 

  • Thaakur SR, Pushpakumari B (2007) Influence of spirulina on the phenytoin induced haematological changes. Anc Sci Life 26(3):9–15

    PubMed  Google Scholar 

  • Tufan K, Oztanir N, Ofluoglu E, Ozogul C, Uzum N, Dursun A, Pasaoglu H, Pasaoglu A (2008) Ultrastructure protection and attenuation of lipid peroxidation after blockade of presynaptic release of glutamate by lamotrigine in experimental spinal cord injury. Neurosurg Focus 25(5):E6

    Article  PubMed  Google Scholar 

  • Tütüncüoğlu S, Kütükçüler N, Kepe L, Coker C, Berdeli A, Tekgül H. (2001) Proinflammatory cytokines, prostaglandins and zinc in febrile convulsions. Pediatr Int. 43(3):235–239

    Google Scholar 

  • Verrotti A, Basciani F, Trotta D, Pomilio MP, Morgese G, Chiarelli F (2002) Serum copper, zinc, selenium, glutathione peroxidase and superoxide dismutase levels in epileptic children before and after 1 year of sodium valproate and carbamazepine therapy. Epilepsy Res 48(1–2):71–75

    Article  PubMed  CAS  Google Scholar 

  • Weber GF, Maertens P, Meng XZ, Pippenger CE (1991) Glutathione peroxidase deficiency and childhood seizures. Lancet 337(8755):1443–1444

    Article  PubMed  CAS  Google Scholar 

  • White HS (2005) Molecular pharmacology of topiramate: managing seizures and preventing migraine. Headache 45(Suppl 1):S48–S56

    Article  PubMed  Google Scholar 

  • Wirth EK, Conrad M, Winterer J, Wozny C, Carlson BA, Roth S, Schmitz D, Bornkamm GW, Coppola V, Tessarollo L, Schomburg L, Kohrle J, Hatfield DL, Schweizer U (2010) Neuronal selenoprotein expression is required for interneuron development and prevents seizures and neurodegeneration. FASEB J 24(3):844–852

    Article  PubMed  CAS  Google Scholar 

  • Wojciak RW, Mojs E, Stanislawska-Kubiak M, Samborski W (2013) The serum zinc, copper, iron, and chromium concentrations in epileptic children. Epilepsy Res 104(1–2):40–44

    Article  PubMed  CAS  Google Scholar 

  • Yaari Y, Selzer ME, Pincus JH (1986) Phenytoin: mechanisms of its anticonvulsant action. Ann Neurol 20(2):171–184

    Article  PubMed  CAS  Google Scholar 

  • Yis U, Seckin E, Kurul SH, Kuralay F, Dirik E (2009) Effects of epilepsy and valproic acid on oxidant status in children with idiopathic epilepsy. Epilepsy Res 84(2–3):232–237

    Article  PubMed  CAS  Google Scholar 

  • Yuksel A, Cengiz M, Seven M, Ulutin T (2001) Changes in the antioxidant system in epileptic children receiving antiepileptic drugs: two-year prospective studies. J Child Neurol 16(8):603–606

    Article  PubMed  CAS  Google Scholar 

  • Yürekli VA, Nazıroğlu M (2013) Selenium and topiramate attenuates blood oxidative toxicity in patients with Epilepsy: A Clinical Pilot Study. Biol Trace Elem Res. doi:10.1007/s12011-013-9616-9

    PubMed  Google Scholar 

  • Yurekli VA, Gurler S, Naziroglu M, Uguz AC, Koyuncuoglu HR (2012) Zonisamide attenuates MPP(+)-induced oxidative toxicity through modulation of Ca(2+) signaling and caspase-3 activity in neuronal PC12 cells. Cell Mol Neurobiol 33(2):205–212

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

There is no conflict interest and financial support for the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Nazıroğlu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nazıroğlu, M., Yürekli, V.A. Effects of Antiepileptic Drugs on Antioxidant and Oxidant Molecular Pathways: Focus on Trace Elements. Cell Mol Neurobiol 33, 589–599 (2013). https://doi.org/10.1007/s10571-013-9936-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-013-9936-5

Keywords

Navigation