Skip to main content
Log in

Effects of Dietary Selenium Deficiency on mRNA Levels of Twenty-One Selenoprotein Genes in the Liver of Layer Chicken

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Selenium (Se) is an essential trace element in many life forms due to its occurrence as selenocysteine (Sec) residue in selenoproteins. However, little is known about the expression pattern of selenoproteins in the liver of layer chicken. To investigate the effects of Se deficiency on the mRNA expressions of selenoproteins in the liver tissue of layer chickens, 1-day-old layer chickens were randomly allocated into two groups (n = 120/group). The Se-deficient group (−Se) was fed a Se-deficient corn–soy basal diet; the Se-adequate group as control (+Se) was fed the same basal diet supplemented with Se at 0.15 mg/kg (sodium selenite). The liver tissue was collected and examined for mRNA levels of 21 selenoprotein genes at 15, 25, 35, 45, 55, and 65 days old. The data indicated that the mRNA expressions of Gpx1, Gpx2, Gpx3, Gpx4, Sepn1, Sepp1, Selo, Sepx1, Selu, Txnrd1, Txnrd2, Txnrd3, Dio1, Dio2, SPS2, Selm, SelPb, Sep15, and Sels were decreased (p < 0.05), but not the levels of Dio3 and Seli (p > 0.05). The results showed that the mRNA levels of 19 selenoprotein (except Seli and Dio3) genes in the layer chicken liver were regulated by diet Se level. The present study provided some compensated data about the roles of Se in the regulation of selenoproteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Loflin J, Lopez N, Whanger PD, Kioussi C (2006) Selenoprotein W during development and oxidative stress. J Inorg Biochem 100:1679–1684

    Article  CAS  PubMed  Google Scholar 

  2. Yu D, Li JL, Zhang JL, Gao XJ, Xu S (2011) Effects of dietary selenium on selenoprotein W gene expression in the chicken immune organs. Biol Trace Elem Res 144:678–687

    Article  CAS  PubMed  Google Scholar 

  3. Naziroglu M, Karaoglu A, Aksoy AO (2004) Selenium and high dose vitamin E administration protects cisplatin-induced oxidative damage to renal, liver and lens tissues in rats. Toxicology 195:221–230

    Article  CAS  PubMed  Google Scholar 

  4. Naziroglu M, Yurekli VA (2013) Effects of antiepileptic drugs on antioxidant and oxidant molecular pathways: focus on trace elements. Cell Mol Neurobiol 33:589–599

    Article  CAS  PubMed  Google Scholar 

  5. Huang JQ, Li DL, Zhao H et al (2011) The selenium deficiency disease exudative diathesis in chicks is associated with downregulation of seven common selenoprotein genes in liver and muscle. J Nutr 141:1605–1610

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Gao X, Xing H, Li S et al (2012) Selenium regulates gene expression of selenoprotein W in chicken gastrointestinal tract. Biol Trace Elem Res 145:181–188

    Article  CAS  PubMed  Google Scholar 

  7. Behne D, Kyriakopoulos A (2001) Mammalian selenium-containing proteins. Annu Rev Nutr 21:453–473

    Article  CAS  PubMed  Google Scholar 

  8. Kryukov GV, Castellano S, Novoselov SV et al (2003) Characterization of mammalian selenoproteomes. Science 300:1439–1443

    Article  CAS  PubMed  Google Scholar 

  9. Mariotti M, Ridge PG, Zhang Y et al (2012) Composition and evolution of the vertebrate and mammalian selenoproteomes. PLoS One 7:e33066

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Reeves MA, Hoffmann PR (2009) The human selenoproteome: recent insights into functions and regulation. Cell Mol Life Sci CMLS 66:2457–2478

    Article  CAS  Google Scholar 

  11. Wang R, Sun B, Zhang Z, Li S, Xu S (2011) Dietary selenium influences pancreatic tissue levels of selenoprotein W in chickens. J Inorg Biochem 105:1156–1160

    Article  CAS  PubMed  Google Scholar 

  12. Pappas AC, Zoidis E, Surai PF, Zervas G (2008) Selenoproteins and maternal nutrition. Comparative biochemistry and physiology. Part B, Biochem Mol Biol 151:361–372

    Article  CAS  Google Scholar 

  13. Zhou JC, Zhao H, Li JG et al (2009) Selenoprotein gene expression in thyroid and pituitary of young pigs is not affected by dietary selenium deficiency or excess. J Nutr 139:1061–1066

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Barnes KM, Evenson JK, Raines AM, Sunde RA (2009) Transcript analysis of the selenoproteome indicates that dietary selenium requirements of rats based on selenium-regulated selenoprotein mRNA levels are uniformly less than those based on glutathione peroxidase activity. J Nutr 139:199–206

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Li JL, Ruan HF, Li HX et al (2011) Molecular cloning, characterization and mRNA expression analysis of a novel selenoprotein: avian selenoprotein W from chicken. Mol Biol Rep 38:4015–4022

    Article  CAS  PubMed  Google Scholar 

  16. Zhang J, Li J, Zhang Z et al (2012) Ubiquitous expression of selenoprotein N transcripts in chicken tissues and early developmental expression pattern in skeletal muscles. Biol Trace Elem Res 146:187–191

    Article  CAS  PubMed  Google Scholar 

  17. Burk RF, Hill KE (2005) Selenoprotein P: an extracellular protein with unique physical characteristics and a role in selenium homeostasis. Annu Rev Nutr 25:215–235

    Article  CAS  PubMed  Google Scholar 

  18. Thuluvath PJ, Triger DR (1992) Selenium in chronic liver disease. J Hepatol 14:176–182

    Article  CAS  PubMed  Google Scholar 

  19. Naziroglu M (2009) Role of selenium on calcium signaling and oxidative stress-induced molecular pathways in epilepsy. Neurochem Res 34:2181–2191

    Article  CAS  PubMed  Google Scholar 

  20. Sun B, Wang R, Li J, Jiang Z, Xu S (2011) Dietary selenium affects selenoprotein W gene expression in the liver of chicken. Biol Trace Elem Res 143:1516–1523

    Article  CAS  PubMed  Google Scholar 

  21. Liu Y, Zhao H, Zhang Q et al (2012) Prolonged dietary selenium deficiency or excess does not globally affect selenoprotein gene expression and/or protein production in various tissues of pigs. J Nutr 142:1410–1416

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Burk RF (1991) Molecular biology of selenium with implications for its metabolism. FASEB: Off Publ Fed Am Soc Exp Biol 5:2274–2279

    CAS  Google Scholar 

  23. Hill KE, Lyons PR, Burk RF (1992) Differential regulation of rat liver selenoprotein mRNAs in selenium deficiency. Biochem Biophys Res Commun 185:260–263

    Article  CAS  PubMed  Google Scholar 

  24. Bermano G, Nicol F, Dyer JA et al (1995) Tissue-specific regulation of selenoenzyme gene expression during selenium deficiency in rats. Biochem J 311(Pt 2):425–430

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Sunde RA, Hadley KB (2010) Phospholipid hydroperoxide glutathione peroxidase (Gpx4) is highly regulated in male turkey poults and can be used to determine dietary selenium requirements. Exp Biol Med (Maywood) 235:23–31

    Article  CAS  Google Scholar 

  26. Hrdina J, Banning A, Kipp A et al (2009) The gastrointestinal microbiota affects the selenium status and selenoprotein expression in mice. J Nutr Biochem 20:638–648

    Article  CAS  PubMed  Google Scholar 

  27. Sunde RA, Raines AM, Barnes KM, Evenson JK (2009) Selenium status highly regulates selenoprotein mRNA levels for only a subset of the selenoproteins in the selenoproteome. Biosci Rep 29:329–338

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Hill KE, McCollum GW, Boeglin ME, Burk RF (1997) Thioredoxin reductase activity is decreased by selenium deficiency. Biochem Biophys Res Commun 234:293–295

    Article  CAS  PubMed  Google Scholar 

  29. Hostetler CE, Michal J, Robison M, Ott TL, Kincaid RL (2006) Effect of selenium intake and fetal age on mRNA levels of two selenoproteins in porcine fetal and maternal liver. J Anim Sci 84:2382–2390

    Article  CAS  PubMed  Google Scholar 

  30. Berry MJ, Banu L, Larsen PR (1991) Type I iodothyronine deiodinase is a selenocysteine-containing enzyme. Nature 349:438–440

    Article  CAS  PubMed  Google Scholar 

  31. Arthur JR, Nicol F, Beckett GJ, Trayhurn P (1991) Impairment of iodothyronine 5′-deiodinase activity in brown adipose tissue and its acute stimulation by cold in selenium deficiency. Can J Physiol Pharmacol 69:782–785

    Article  CAS  PubMed  Google Scholar 

  32. Korotkov KV, Kumaraswamy E, Zhou Y, Hatfield DL, Gladyshev VN (2001) Association between the 15-kDa selenoprotein and UDP-glucose:glycoprotein glucosyltransferase in the endoplasmic reticulum of mammalian cells. J Biol Chem 276:15330–15336

    Article  CAS  PubMed  Google Scholar 

  33. Lin L, Zhou W, Dai H et al (2012) Selenium reduces cadmium uptake and mitigates cadmium toxicity in rice. J Hazard Mater 235–236:343–351

    Article  PubMed  Google Scholar 

  34. Yeh MS, Huang CJ, Guo CH et al (2012) Identification and cloning of a selenophosphate synthetase (SPS) from tiger shrimp, Penaeus monodon, and its transcription in relation to molt stages and following pathogen infection. Dev Comp Immunol 36:21–30

    Article  CAS  PubMed  Google Scholar 

  35. Xu XM, Carlson BA, Mix H et al (2007) Biosynthesis of selenocysteine on its tRNA in eukaryotes. PLoS Biol 5:e4

    Article  PubMed Central  PubMed  Google Scholar 

  36. Costa FC, Oliva MA, de Jesus TC, Schenkman S, Thiemann OH (2011) Oxidative stress protection of Trypanosomes requires selenophosphate synthase. Mol Biochem Parasitol 180:47–50

    Article  CAS  PubMed  Google Scholar 

  37. Novoselov SV, Kryukov GV, Xu XM et al (2007) Selenoprotein H is a nucleolar thioredoxin-like protein with a unique expression pattern. J Biol Chem 282:11960–11968

    Article  CAS  PubMed  Google Scholar 

  38. Guariniello S, Colonna G, Raucci R et al (2014) Structure–function relationship and evolutionary history of the human selenoprotein M (SelM) found over-expressed in hepatocellular carcinoma. Biochim Biophys Acta 1844:447–456

    Article  CAS  PubMed  Google Scholar 

  39. Hill KE, Chittum HS, Lyons PR, Boeglin ME, Burk RF (1996) Effect of selenium on selenoprotein P expression in cultured liver cells. Biochim Biophys Acta 1313:29–34

    Article  PubMed  Google Scholar 

  40. Messaoudi I, Banni M, Said L, Said K, Kerkeni A (2010) Involvement of selenoprotein P and GPx4 gene expression in cadmium-induced testicular pathophysiology in rat. Chem Biol Interact 188:94–101

    Article  CAS  PubMed  Google Scholar 

  41. Zeng MS, Li X, Liu Y et al (2012) A high-selenium diet induces insulin resistance in gestating rats and their offspring. Free Radic Biol Med 52:1335–1342

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Graduate innovative research project in Heilongjiang Province China (No. YJSCX-005HLJ), China Postdoctoral Science Foundation (No. 2012 M520702), And Startup Foundation for Doctors of Northeast Agricultural University, China (No. 2012RCB92).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Li.

Additional information

All other authors have read the manuscript and have agreed to submit it in its current form for consideration for publication in the journal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C.P., Fu, J., Lin, S.L. et al. Effects of Dietary Selenium Deficiency on mRNA Levels of Twenty-One Selenoprotein Genes in the Liver of Layer Chicken. Biol Trace Elem Res 159, 192–198 (2014). https://doi.org/10.1007/s12011-014-0005-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-014-0005-9

Keywords

Navigation