Skip to main content
Log in

Direct Interaction between Terbium Ion and Peroxidase in Horseradish at Different pH Values

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Rare earth elements (REEs) entering plant cells can directly interact with peroxidase in plants, which is the structural basis for the decrease in the activity of peroxidase. Different cellular compartments have different pH values. However, little information is available regarding the direct interaction between REEs and peroxidase in plants at different pH values. Here, we investigated the charge distribution on the surface of horseradish peroxidase (HRP) molecule as well as the interaction of terbium ion (Tb3+, one type of REEs) and HRP at different pH values. Using the molecular dynamics simulation, we found that when the pH value was from 4.0 to 8.0, a large amount of negative charges were intensively distributed on the surface of HRP molecule, and thus, we speculated that Tb3+ with positive charges might directly interact with HRP at pH 4.0–8.0. Subsequently, using ultraviolet-visible spectroscopy, we demonstrated that Tb3+ could directly interact with HRP in the simulated physiological solution at pH 7.0 and did not interact with HRP in other solutions at pH 5.0, pH 6.0 and pH 8.0. In conclusion, we showed that the direct interaction between Tb3+ and HRP molecule depended on the pH value of cellular compartments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Redling K (2006) Rare earth elements in agriculture with emphasis on animal husbandry. Ludwig-Maximilians-Universität München LMU, München

    Google Scholar 

  2. Wang Q, Zhao B, Li G, Zhou R (2010) Application of rare earth modified Zr-based ceria-zirconia solid solution in three-way catalyst for automotive emission control. Environ Sci Technol 44(10):3870–3875

    Article  CAS  PubMed  Google Scholar 

  3. Mikhaylov G, Mikac U, Magaeva AA, Itin VI, Naiden EP, Psakhye I, Babes L, Reinheckel T, Peters C, Zeiser R, Bogyo M, Turk V, Psakhye SG, Turk B, Vasiljeva O (2011) Ferri-liposomes as an MRI-visible drug-delivery system for targeting tumours and their microenvironment. Nat Nanotechnol 6(9):594–602

    Article  CAS  PubMed  Google Scholar 

  4. Moller P, Paces T, Dulski P, Morteani G (2002) Anthropogenic Gd in surface water, drainage system, and the water supply of the city of Prague, Czech Republic. Environ Sci Technol 36(11):2387–2394

    Article  CAS  PubMed  Google Scholar 

  5. Humphries M (2010) Rare earth elements: the global supply chain. DIANE Publishing, Darby

    Google Scholar 

  6. Du X, Graedel T (2011) Global in-use stocks of the rare earth elements: a first estimate. Environ Sci Technol 45(9):4096–4101

    Article  CAS  PubMed  Google Scholar 

  7. Ni JZ (1995) Bioinorganic chemistry of rare earth elements. Science, Beijing

  8. Wang C, Lu X, Tian Y, Cheng T, Hu L, Chen F, Jiang C, Wang X (2011) Lanthanum resulted in unbalance of nutrient elements and disturbance of cell proliferation cycles in V. faba L. Seedlings. Biol Trace Elem Res 143(2):1174–1181

    Article  CAS  PubMed  Google Scholar 

  9. Wang LH, Zhou Q, Zhao B, Huang XH (2010) Toxic effect of heavy metal terbium ion on cell membrane in horseradish. Chemosphere 80(1):28–34

    Article  CAS  PubMed  Google Scholar 

  10. Jiang N, Wang L, Du C, Ding X, Huang X (2010) The formation of a new horseradish peroxidase binding rare earth. Environ Chem Lett 9:191–196

    Article  Google Scholar 

  11. Babula P, Adam V, Opatrilova R, Zehnalek J, Havel L, Kizek R (2008) Uncommon heavy metals, metalloids and their plant toxicity: a review. Environ Chem Lett 6(4):189–213

    Article  CAS  Google Scholar 

  12. Wang LH, Zhou Q, Huang XH (2010) Effects of heavy metal terbium on contents of cytosolic nutrient elements in horseradish cell. Ecotoxicol Environ Saf 73(5):1012–1017

    Article  CAS  PubMed  Google Scholar 

  13. Wang LH, Huang XH, Zhou Q (2008) Effects of rare earth elements on the distribution of mineral elements and heavy metals in horseradish. Chemosphere 73(3):314–319

    Article  CAS  PubMed  Google Scholar 

  14. Wang L, Zhou Q, Huang X (2009) Photosynthetic responses to heavy metal terbium stress in horseradish leaves. Chemosphere 77(7):1019–1025

    Article  CAS  PubMed  Google Scholar 

  15. Liu C, F-s H, Tao Y, Liu T, Xie Y-n X, J-h LZ-r (2011) The mechanism of the molecular interaction between cerium (III) and ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). Biol Trace Elem Res 143(2):1110–1120

    Article  CAS  PubMed  Google Scholar 

  16. Guo SF, Cao R, Lu AH, Zhou Q, Lu TH, Ding XL, Li CJ, Huang XH (2008) One of the possible mechanisms for the inhibition effect of Tb(III) on peroxidase activity in horseradish (Armoracia rusticana) treated with Tb(III). J Biol Inorg Chem 13(4):587–597

    Article  CAS  PubMed  Google Scholar 

  17. Wang L, Lu A, Lu T, Ding X, Huang X (2010) Interaction between lanthanum ion and horseradish peroxidase in vitro. Biochimie 92(1):41–50

    Article  CAS  PubMed  Google Scholar 

  18. Wang LH, Zhou Q, Lu TH, Ding XL, Huang XH (2010) Molecular and cellular mechanism of effect of La(III) on horseradish peroxidase. J Biol Inorg Chem 15(7):1063–1069

    Article  CAS  PubMed  Google Scholar 

  19. Guo S, Wang L, Lu A, Lu T, Ding X, Huang X (2010) Inhibition mechanism of lanthanum ion on the activity of horseradish peroxidase in vitro. Spectrochimica Acta Part A Mol Biomol Spectrosc 75(2):936–940

    Article  Google Scholar 

  20. Guo S, Zhou Q, Lu T, Ding X, Huang X (2007) Interaction between La3+ and MP-11 in the physiological solution. Electrochim Acta 52(5):2032–2038

    Article  CAS  Google Scholar 

  21. Guo SF, Zhou Q, Lu TH, Ding XL, Huang XH (2008) Spectroscopic studies of interactions involving horseradish peroxidase and Tb3+. Spectrochim Acta Part A Mol Biomol Spectrosc 70(4):818–823

    Article  Google Scholar 

  22. Jiang N, Wang L, Lu T, Huang X (2011) Toxic effect of terbium ion on horseradish cell. Biol Trace Elem Res 143(3):1722–1728

    Article  CAS  PubMed  Google Scholar 

  23. Chattopadhyay K, Mazumdar S (2000) Structural and conformational stability of horseradish peroxidase: effect of temperature and pH. Biochemistry 39(1):263–270

    Article  CAS  PubMed  Google Scholar 

  24. Goyal R, He X (1998) Evidence for NOs redox form of nitric oxide as nitrergic inhibitory neurotransmitter in gut. Am J Physiol 275(5):1185–1192

    Google Scholar 

  25. Dijols S, Boucher JL, Mahy JP, Ricoux R, Desbois A, Zimmermann JL, Mansuy D (2001) N-Hydroxyguanidines as new heme ligands: UV-visible, EPR, and resonance Raman studies of the interaction of various compounds bearing a CNOH function with microperoxidase-8? Biochemistry (Mosc) 40(33):9909–9917

    Article  Google Scholar 

  26. El Tahir KEH, Ashour MMS, Al-Harbi MM (1993) The respiratory effects of the volatile oil of the black seed (Nigella sativa) in guinea-pigs: elucidation of the mechanism(s) of action. Gen Pharmacol 24(5):1115–1122

    Article  PubMed  Google Scholar 

  27. Rao S, Vijayakrishnan R, Kumar M (2008) Structure-based design of a novel class of potent inhibitors of InhA, the enoyl acyl carrier protein reductase from Mycobacterium Tuberculosis: a computer modelling approach. Chem Biol Drug Des 72(5):444–449

    Article  CAS  Google Scholar 

  28. Al-Azzam W, Pastrana EA, Ferrer Y, Huang Q, Schweitzer-Stenner R, Griebenow K (2002) Structure of poly(ethylene glycol)-modified horseradish peroxidase in organic solvents: infrared amide I spectral changes upon protein dehydration are largely caused by protein structural changes and not by water removal per se. Biophys J 83(6):3637–3651

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Quinn R, Mercer-Smith J, Burstyn J, Valentine J (1984) Influence of hydrogen bonding on the properties of iron porphyrin imidazole complexes. An internally hydrogen bonded imidazole ligand. J Am Chem Soc 106(15):4136–4144

    Article  CAS  Google Scholar 

  30. Irace G, Bismuto E, Savy F, Colonna G (1986) Unfolding pathway of myoglobin: molecular properties of intermediate forms. Arch Biochem Biophys 244(2):459–469

    Article  CAS  PubMed  Google Scholar 

  31. Shelnutt J, Medforth C, Berber M, Barkigia K, Smith K (1991) Relationships between structural parameters and Raman frequencies for some planar and nonplanar nickel (II) porphyrins. J Am Chem Soc 113(11):4077–4087

    Article  CAS  Google Scholar 

  32. Medforth C, Senge M, Smith K, Sparks L, Shelnutt J (1992) Nonplanar distortion modes for highly substituted porphyrins. J Am Chem Soc 114(25):9859–9869

    Article  CAS  Google Scholar 

  33. Guo SF, Zhou Q, Lu TH, Ding XL, Huang XH (2008) Inhibition mechanism of Tb-III on horseradish peroxidase activity. Chem Biodivers 5(10):2050–2059

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support of the National Natural Science Foundation of China (31170477) and Jiangsu Province (BK2011160).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qing Zhou or Xiaohua Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, L., Zhou, Q. & Huang, X. Direct Interaction between Terbium Ion and Peroxidase in Horseradish at Different pH Values. Biol Trace Elem Res 157, 183–188 (2014). https://doi.org/10.1007/s12011-013-9883-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-013-9883-5

Keywords

Navigation