Skip to main content

Advertisement

Log in

One of the possible mechanisms for the inhibition effect of Tb(III) on peroxidase activity in horseradish (Armoracia rusticana) treated with Tb(III)

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

One of the possible mechanisms for the inhibition effect of Tb(III) on peroxidase activity in horseradish (Armoracia rusticana) treated with Tb(III) was investigated using some biophysical and biochemical methods. Firstly, it was found that a large amount of Tb(III) can be distributed on the cell wall, that some Tb(III) can enter into the horseradish cell, indicating that peroxidase was mainly distributed on cell wall, and thus that Tb(III) would interact with horseradish peroxidase (HRP) in the plant. In addition, peroxidase bioactivity was decreased in the presence of Tb(III). Secondly, a new peroxidase-containing Tb(III) complex (Tb–HRP) was obtained from horseradish after treatment with Tb(III); the molecular mass of Tb–HRP is near 44 kDa and the pI is about 8.80. Thirdly, the electrocatalytic activity of Tb–HRP is much lower than that of HRP obtained from horseradish without treatment with Tb(III). The decrease in the activity of Tb–HRP is due to the destruction (unfolding) of the conformation in Tb–HRP. The planarity of the heme active center in the Tb–HRP molecule was increased and the extent of exposure of Fe(III) in heme was decreased, leading to inhibition of the electron transfer. The microstructure change in Tb–HRP might be the result of the inhibition effect of Tb(III) on peroxidase activity in horseradish.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Hu Z, Richter H, Sparovek G, Schnug E (2004) J plant Nutr 27:183–220

    Article  CAS  Google Scholar 

  2. Zhang S, Shan X (2001) Environ Pollut 112:395–405

    Article  PubMed  CAS  Google Scholar 

  3. Ni JZ (eds) (1995) Bioinorganic chemistry of rare earth elements. Science, Beijing, pp 18–27

  4. Morrison JF, Cleland WW (1983) Biochemistry 22:5507–5513

    Article  CAS  Google Scholar 

  5. Evans CH, Ridella JD (1985) Eur J Biochem 151:29–32

    Article  PubMed  CAS  Google Scholar 

  6. Achyuthan KE, Mary A, Greenberg CS (1989) Biochem J 257:331–338

    PubMed  CAS  Google Scholar 

  7. Wakamatsu K, Takahama U (1993) Physiol Plants 88:167–171

    Article  CAS  Google Scholar 

  8. Sakharov IY, Vesga BMK, Galaev IY, Sakharova IV, Pletjushkina OY (2001) Plant Sci 161:853–860

    Article  CAS  Google Scholar 

  9. Colonna S, Gaggero N, Richelmi C, Pasta P (1999) Trends Biotechnol 17:163–168

    Article  PubMed  CAS  Google Scholar 

  10. Xiao Y, Ju HX, Chen HY (2000) Anal Biochem 278:22–28

    Article  CAS  Google Scholar 

  11. Guo S, Zhou Q, Lu T, Ding X, Huang X (2007) Electrochim Acta 52:2032–2038

    Article  CAS  Google Scholar 

  12. Andrews J, Adams SR, Burton KS, Evered CE (2002) J Exp Bot 53:2185–2191

    Article  PubMed  CAS  Google Scholar 

  13. Laemmli UK (1970) Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  14. Saraiva JA, Nunes CS, Coimbra MA (2007) Food Chem 101:1571–1579

    Article  CAS  Google Scholar 

  15. Gu H-Y, Yu A-M, Chen H-Y (2001) J Electroanal Chem 516:119–126

    Article  CAS  Google Scholar 

  16. Chen Y, Zhang X, Gong Y, Zhao N, Zeng T, Song X (1999) J Colloid Interface Sci 214:38–45

    Article  Google Scholar 

  17. Chen Y, Mao H, Zhang X, Gong Y, Zhao N (1999) Int J Biol Macromol 26:129–134

    Article  PubMed  CAS  Google Scholar 

  18. Dejong DW (1967) J Histochem Cytochem 15:335–346

    CAS  Google Scholar 

  19. Liu EH, Lamport DTA (1974) Plant Physiol 54:870–876

    Article  PubMed  CAS  Google Scholar 

  20. Mishra NP, Mishra RK, Singhal GS (1994) Plant Physiol 106:53–60

    Google Scholar 

  21. Kawaoka A, Matsunaga E, Endo S, Kondo S, Yoshida K, Shinmyo A, Ebinuma A (2003) Plant Physiol 132:1177–1185

    Article  PubMed  CAS  Google Scholar 

  22. Poulter A, Collin HA, Thurman DA, Hardwich K (1985) Plant Sci 42:61–66

    Article  CAS  Google Scholar 

  23. Haschke RH, Friedhoff JM (1978) Biochem Biophys Res Commun 80:1039–1042

    Article  PubMed  CAS  Google Scholar 

  24. Highsmith SR, Head MR (1983) J Biol Chem 258:6858–6862

    PubMed  CAS  Google Scholar 

  25. Petersheim M, Halladay HN, Blodnieks J (1989) Biophys J 56:551–556

    PubMed  CAS  Google Scholar 

  26. Squier TC, Bigelow DJ, Fernandez-Belda FJ, de Meis L, Inesi G (1990) J Biol Chem 265:13713–13720

    PubMed  CAS  Google Scholar 

  27. Tang JL, Jiang JG, Song YH, Peng ZQ, Wu ZY, Dong SJ, Wang EK (2002) Chem Phys Lipids 120:119–129

    Article  PubMed  CAS  Google Scholar 

  28. Qi Z, Li X, Sun D, Li C, Lu T, Ding X, Huang X (2006) Bioelectrochemistry 68:40–47

    Article  PubMed  CAS  Google Scholar 

  29. Zhang Y, He P, Hu N (2004) Electrochim Acta 49:1981–1988

    Article  CAS  Google Scholar 

  30. Zare HR, Nasirizadeh N, Golabi SM, Namazian M, Mazloum-Ardakani M, Nematollahi D (2006) Sens Actuators B 114:610–617

    Article  CAS  Google Scholar 

  31. Myer YP (1968) J Biol Chem 243:2115–2122

    PubMed  CAS  Google Scholar 

  32. Carvalho ASL, Melo EP, Ferreira BS, Neves-Petersen MT, Petersen SB, Aires-Barros MR (2003) Arch Biochem Biophys 415:257–267

    Article  PubMed  CAS  Google Scholar 

  33. Veitch NC (2004) Phytochemistry 65:249–259

    Article  PubMed  CAS  Google Scholar 

  34. Jiang HJ, Huang XH, Wang XF, Li X, Xing W, Ding XL, Lu TH (2003) J Electroanal Chem 545:83–88

    Article  CAS  Google Scholar 

  35. Chattopadhyay K, Mazumdar S (2000) Biochemistry 39:263–270

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the National Natural Science Foundation of China (20471030, 30570323) and the Foundation of State Developing and Reforming Committee (IFZ2051210). The authors are grateful to Erkang Wang (academician of the Chinese Academy of Science) and Shaojun Dong (academician of the Third World Academy of Sciences) of Changchun Institute of Applied Chemistry, Chinese Academy of Sciences. The authors thank the Research Center for Proteome Analysis, Key Lab of Proteomics, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaohua Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, S., Cao, R., Lu, A. et al. One of the possible mechanisms for the inhibition effect of Tb(III) on peroxidase activity in horseradish (Armoracia rusticana) treated with Tb(III). J Biol Inorg Chem 13, 587–597 (2008). https://doi.org/10.1007/s00775-008-0347-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-008-0347-x

Keywords

Navigation