Skip to main content

Advertisement

Log in

Effects of Iscador and Vincristine and 5-Fluorouracil on Brain, Liver, and Kidney Element Levels in Alloxan-Induced Diabetic Mice

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Exposure to substance toxicity is especially dangerous for diabetics because it accelerates and intensifies diabetic complication. Homeostasis of trace elements can be disrupted by diabetes mellitus. On the other hand, disturbance in trace element status in diabetes mellitus may contribute to insulin resistance and development of diabetic complications. The aim of the present study was to compare the concentration of elements in the brain, liver, and kidneys of animals with induced diabetes after the administration of plant preparations (iscador and vincristine) and 5-fluorouracil. The experiments were carried out on male mice. The animals were divided into five groups of ten mice each: one control and four experimental groups. The first experimental group was administered alloxan at 75 mg/kg b.w. for 4 days, the second group was administered both alloxan at 75 mg/kg b.w. and vincristine 1 mg/kg b.w. for 4 days, and the third group was administered both alloxan at 75 mg/kg b.w. and 5-fluorouracil 75 mg/kg b.w. for 4 days. The animals of the fourth group were administered both alloxan at 75 mg/kg b.w. and iscador Qu at 5 mg/kg b.w. for 4 days. Calcium, magnesium, iron, copper, zinc, sodium, and potassium levels in the tissues were analyzed by flame atomic absorption spectrophotometer. We observed that zinc, copper, magnesium, sodium, and potassium were lower in the brain as compared to the control animals. The copper levels in the liver were also lower in diabetic groups than in control groups. However, the iscador and vincristine and 5-fluorouracil did not induce significant differences in the five groups. In conclusion, results of the current study indicated that changes of the investigated essential elements may contribute to explaining the role of impaired element metabolism of some elements in the progression of diabetic complications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ozcelik D, Naziroglu M, Tunçdemir M et al (2012) Zinc supplementation attenuates metallothionein and oxidative stress changes in kidney of streptozotocin-induced diabetic rats. Biol Trace Elem Res 150(1–3):342–349

    Article  PubMed  Google Scholar 

  2. Naziroğlu M, Dikici DM, Dursun S (2012) Role of oxidative stress and Ca(2+) signaling on molecular pathways of neuropathic pain in diabetes: focus on TRP channels. Neurochem Res 37(10):2065–2075

    Article  PubMed  Google Scholar 

  3. Bencini A, Failli P, Valtancoli B et al (2010) Low molecular weight compounds with transition metals as free radical scavengers and novel therapeutic agents. Cardiovasc Hematol Agents Med Chem 8(3):128–146

    Article  CAS  PubMed  Google Scholar 

  4. Jiang R, Manson JE, Meigs JB et al (2004) Body iron stores in relation to risk of type 2 diabetes in apparently healthy women. JAMA 291(6):711–717

    Article  CAS  PubMed  Google Scholar 

  5. Swaminathan S, Fonseca VA, Alam MG et al (2007) The role of iron in diabetes and its complications. Diabetes Care 30(7):1926–1933

    Article  CAS  PubMed  Google Scholar 

  6. Beletate V, El Dib RP, Atallah AN (2007) Zinc supplementation for the prevention of type 2 diabetes mellitus. Cochrane Database Syst Rev 24(1):CD005525

    Google Scholar 

  7. Mocchegiani E, Giacconi R, Malavolta M (2008) Zinc signalling and subcellular distribution: emerging targets in type 2 diabetes. Trends Mol Med 14(10):419–428

    Article  CAS  PubMed  Google Scholar 

  8. Afridi HI, Kazi TG, Kazi N et al (2008) Potassium, calcium, magnesium, and sodium levels in biological samples of hypertensive and nonhypertensive diabetes mellitus patients. Biol Trace Elem Res 124(3):206–224

    Article  CAS  PubMed  Google Scholar 

  9. Barbagallo M, Dominguez LJ, Galioto A et al (2003) Role of magnesium in insulin action, diabetes and cardio-metabolic syndrome X. Mol Aspects Med 24(1–3):39–52

    Article  CAS  PubMed  Google Scholar 

  10. Chaudhary DP, Sharma R, Bansal DD (2010) Implications of magnesium deficiency in type 2 diabetes: a review. Biol Trace Elem Res 134(2):119–129

    Article  CAS  PubMed  Google Scholar 

  11. Robles FC, Laguna Neto D, Dias FG et al (2011) Diabetic ketoacidosis: difference between potassium determined by blood gas analysis versus plasma measurement. Arq Bras Endocrinol Metabol 55(4):256–259

    Article  PubMed  Google Scholar 

  12. Kjeldsen K, Braendgaard H, Sidenius P et al (1987) Diabetes decreases Na+-K+ pump concentration in skeletal muscles, heart ventricular muscle, and peripheral nerves of rat. Diabetes 36:842–848

    Article  CAS  PubMed  Google Scholar 

  13. Ver A, Csermely P, Banyasz T et al (1995) Alterations in the properties and isoform ratios of brain Na+/K+-ATPase in streptozotocin diabetic rats. Biochim Biophys Acta 1237:143–150

    Article  PubMed  Google Scholar 

  14. Temel HE, Akyuz F (2007) The effects of captopril and losartan on erythrocyte membrane Na+/K+-ATPase activity in experimental diabetes mellitus. J Enzym Inhib Med Chem 22:213–217

    Article  CAS  Google Scholar 

  15. Baños G, Pérez-Torres I, El Hafidi M (2008) Medicinal agents in the metabolic syndrome. Cardiovasc Hematol Agents Med Chem 6(4):237–252

    Article  PubMed  Google Scholar 

  16. Prabodh S, Prakash DS, Sudhakar G et al (2011) Status of copper and magnesium levels in diabetic nephropathy cases: a case–control study from South India. Biol Trace Elem Res 142(1):29–35

    Article  CAS  PubMed  Google Scholar 

  17. Tanaka A, Kaneto H, Miyatsuka T et al (2010) Role of copper ion in the pathogenesis of type 2 diabetes. Endocr J 56(5):699–706

    Article  Google Scholar 

  18. Jou MY, Philipps AF, Lonnerdal B (2010) Maternal zinc deficiency in rats affects growth and glucose metabolism in the offspring by inducing insulin resistance postnatally. J Nutr 140:1621–1627

    Article  CAS  PubMed  Google Scholar 

  19. Hall AG, Kelleher SL, Lonnerdal B et al (2005) A graded model of dietary zinc deficiency: effects on growth, insulin-like growth factor-I, and the glucose/insulin axis in weanling rats. J Pediatr Gastroenterol Nutr 41:72–80

    Article  CAS  PubMed  Google Scholar 

  20. Canfield WK, Hambidge KM, Johnson LK (1984) Zinc nutriture in type I diabetes mellitus: relationship to growth measures and metabolic control. J Pediatr Gastroenterol Nutr 3:577–584

    Article  CAS  PubMed  Google Scholar 

  21. Yavuz N, Unal E, Dogan M et al (2005) Serum free prostate-specific antigen and zinc levels in experimental acute pancreatitis. Biol Trace Elem Res 106:205–209

    Article  CAS  PubMed  Google Scholar 

  22. Kelleher SL, McCormick NH, Velasquez V et al (2011) Zinc in specialized secretory tissues: roles in the pancreas, prostate, and mammary gland. Adv Nutr 2(2):101–111

    Article  CAS  PubMed  Google Scholar 

  23. Rahim A, Iqbal K (2011) To assess the levels of zinc in serum and changes in the lens of diabetic and senile cataract patients. J Pak Med Assoc 61(9):853–865

    PubMed  Google Scholar 

  24. Durak R, Gülen Y, Kurudirek M et al (2010) Determination of trace element levels in human blood serum from patients with type II diabetes using WDXRF technique: a comparative study. J Xray Sci Technol 18(2):111–120

    CAS  PubMed  Google Scholar 

  25. Ozcelik D, Tuncdemir M, Ozturk M et al (2011) Evaluation of trace elements and oxidative stress levels in the liver and kidney of streptozotocin-induced experimental diabetic rat model. Gen Physiol Biophys 30(4):356–363

    Article  CAS  PubMed  Google Scholar 

  26. Raz I, Havivi E (1988) Influence of chronic diabetes on tissue and blood cells status of zinc, copper, and chromium in the rat. Diabetes Res 7(1):19–23

    CAS  PubMed  Google Scholar 

  27. Rosta K, Tulassay E, Enzsoly A et al (2009) Insulin induced translocation of Na+/K + −ATPase is decreased in the heart of streptozotocin diabetic rats. Acta Pharmacol Sin 30:1616–1624

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agnieszka Greń.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Greń, A., Formicki, G. Effects of Iscador and Vincristine and 5-Fluorouracil on Brain, Liver, and Kidney Element Levels in Alloxan-Induced Diabetic Mice. Biol Trace Elem Res 152, 219–224 (2013). https://doi.org/10.1007/s12011-013-9608-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-013-9608-9

Keywords

Navigation