Skip to main content
Log in

In Utero and Lactational Lanthanum Exposure Induces Olfactory Dysfunction Associated with Downregulation of βIII-tubulin and Olfactory Marker Protein in Young Rats

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

We evaluated the role of βIII-tubulin in the morphology of olfactory receptor neuron (ORN) and olfactory dysfunction in offspring caused by prenatal and postnatal lanthanum exposure. Pregnant rats were exposed to 0.25% lanthanum chloride in drinking water from gestational day (GD) 7 until postnatal day 21. From postnatal day 23 until postnatal day 28, pups were examined with buried food pellet and olfactory maze test. The ultrastructural features of ORNs in the olfactory epithelium (OE) were observed by transmission electron microscope. The expression of βIII-tubulin and olfactory marker protein (OMP) in the tissue sections and homogenates of OE were, respectively, measured by immunodetection and western blot. Behavioral analysis of olfaction showed that lanthanum chloride exposure induced olfactory dysfunction. Offsprings exposed to lanthanum chloride showed enlarged ORN knobs and a decreased number of cilia. In addition, the levels of OMP and βIII-tubulin expression in lanthanum chloride exposure offsprings significantly decreased. Developmental lanthanum exposure could impair olfaction, and this deficit may be attributed to the downregulation of βIII-tubulin and OMP in the OE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Yang J, Liu Q, Zhang L, Wu S, Qi M, Lu S, Xi Q, Cai Y (2009) Lanthanum chloride impairs memory, decreases pCaMK IV, pMAPK and pCREB expression of hippocampus in rats. Toxicol Lett 190:208–214

    Article  PubMed  CAS  Google Scholar 

  2. Zhao H, Cheng Z, Hu R, Chen J, Hong M, Zhou M, Gong X, Wang L, Hong F (2011) Oxidative injury in the brain of mice caused by lanthanid. Biol Trace Elem Res 142:174–189

    Article  PubMed  CAS  Google Scholar 

  3. Zha H, Cheng Z, Chen J, Hu R, Che Y, Cui Y, Wang L, Hong F (2011) The toxicological effects in brain of mice following exposure to cerium chloride. Biol Trace Elem Res 144:872–884

    Article  PubMed  CAS  Google Scholar 

  4. Zhu W, Xu S, Shao P, Zhang H, Wu D, Yang W, Feng J (1997) Bioelectrical activity of the central nervous system among populations in a rare earth element area. Biol Trace Elem Res 57:71–77

    Article  PubMed  CAS  Google Scholar 

  5. Summers MJ, Crowe SF, Ng KT (1996) Administration of lanthanum chloride following a reminder induces a transient loss of memory retrieval in day-old chicks. Brain Res Cogn Brain Res 4:109–119

    Article  PubMed  CAS  Google Scholar 

  6. Briner W, Rycek RF, Moellenberndt A, Dannull K (2000) Neurodevelopmental effects of lanthanum in mice. Neurotoxicol Teratol 22:573–581

    Article  PubMed  CAS  Google Scholar 

  7. Feng LX, Xiao HQ, He X, Li ZJ, Li FL, Liu NQ, Chai ZF, Zhao YL, Zhang ZY (2006) Long-term effects of lanthanum intake on the neurobehavioral development of the rat. Neurotoxicol Teratol 28:119–124

    Article  PubMed  CAS  Google Scholar 

  8. Alexy T, Nemeth N, Wenby RB, Bauersachs RM, Baskurt OK, Meiselman HJ (2007) Effect of lanthanum on red blood cell deformability. Biorheology 44:361–373

    PubMed  CAS  Google Scholar 

  9. Feng LX, Xiao HQ, He X, Li ZJ, Li FL, Liu NQ, Zhao YL, Huang YY, Zhang ZY, Chai ZF (2006) Neurotoxicological consequence of long-term exposure to lanthanum. Toxicol Lett 165:112–120

    Article  PubMed  CAS  Google Scholar 

  10. He X, Zhang Z, Zhang H, Zhao Y, Chai Z (2008) Neurotoxicological evaluation of long-term lanthanum chloride exposure in rats. Toxicol Sci 103:354–361

    Article  PubMed  CAS  Google Scholar 

  11. Lancet D, Sadovsky E, Seidemann E (1993) Probability model for molecular recognition in biological receptor repertoires: significance to the olfactory system. Proc Natl Acad Sci U S A 90:3715–3719

    Article  PubMed  CAS  Google Scholar 

  12. Lu DC, Zhang H, Zador Z, Verkman AS (2008) Impaired olfaction in mice lacking aquaporin-4 water channels. FASEB J 22:3216–3223

    Article  PubMed  CAS  Google Scholar 

  13. Buck LB (2000) The molecular architecture of odor and pheromone sensing in mammals. Cell 100:611–618

    Article  PubMed  CAS  Google Scholar 

  14. Carr VM, Farbman AI, Colletti LM, Morgan JI (1991) Identification of a new non-neuronal cell type in rat olfactory epithelium. Neuroscience 45:433–449

    Article  PubMed  CAS  Google Scholar 

  15. Wrobel BB, Leopold DA (2005) Olfactory and sensory attributes of the nose. Otolaryngol Clin North Am 38:1163–1170

    Article  PubMed  Google Scholar 

  16. Mackay-Sim A, Kittel PW (1990) On the life span of olfactory receptor neurons. Eur J Neurosci 3:209–215

    Article  Google Scholar 

  17. Katsetos CD, Legido A, Perentes E, Mörk SJ (2003) Class III beta-tubulin isotype: a key cytoskeletal protein at the crossroads of developmental neurobiology and tumor neuropathology. J Child Neurol 18:851–866

    Article  PubMed  Google Scholar 

  18. Jouhilahti EM, Peltonen S, Peltonen J (2008) Class III beta-tubulin is a component of the mitotic spindle in multiple cell types. J Histochem Cytochem 56:1113–1119

    Article  PubMed  CAS  Google Scholar 

  19. Roskams AJ, Cai X, Ronnett GV (1998) Expression of neuron-specific beta-III tubulin during olfactory neurogenesis in the embryonic and adult rat. Neuroscience 83:191–200

    Article  PubMed  CAS  Google Scholar 

  20. Lee AC, He J, Ma M (2011) Olfactory marker protein is critical for functional maturation of olfactory sensory neurons and development of mother preference. J Neurosci 31:2974–2982

    Article  PubMed  CAS  Google Scholar 

  21. Margolis FL (1972) A brain protein unique to the olfactory bulb. Proc Natl Acad Sci U S A 69:1221–1224

    Article  PubMed  CAS  Google Scholar 

  22. Reeves PG, Nielsen FH, Fahey GC (1993) AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J Nutr 123:1939–1951

    PubMed  CAS  Google Scholar 

  23. Kondo K, Watanabe K, Sakamoto T, Suzukawa K, Nibu K, Kaga K, Yamasoba T (2009) Distribution and severity of spontaneous lesions in the neuroepithelium and Bowman’s glands in mouse olfactory mucosa: age-related progression. Cell Tissue Res 335:489–503

    Article  PubMed  CAS  Google Scholar 

  24. Ji YJ, Cui MZ (1988) Toxicological studies on safety of rare earths used in agriculture. Biomed Environ Sci 1:270–276

    PubMed  CAS  Google Scholar 

  25. D’Agostino RB, Lown BA, Morganti JB, Massaro EJ (1982) Effects of in utero or suckling exposure to cerium (citrate) on the postnatal development of the mouse. J Toxicol Environ Health 10:449–458

    Article  PubMed  Google Scholar 

  26. Abramczuk JW (1985) The effects of lanthanum chloride on pregnancy in mice and on preimplantation mouse embryos in vitro. Toxicology 34:315–320

    Article  PubMed  CAS  Google Scholar 

  27. Sullivan RM, Wilson DA (2003) Molecular biology of early olfactory memory. Learn Mem 10:1–4

    Article  PubMed  Google Scholar 

  28. Nathan BP, Yost J, Litherland MT, Struble RG, Switzer PV (2004) Olfactory function in apoE knockout mice. Behav Brain Res 150:1–7

    Article  PubMed  CAS  Google Scholar 

  29. Lee VM, Pixley SK (1994) Age and differentiation-related differences in neuron-specific tubulin immunostaining of olfactory sensory neurons. Brain Res Dev Brain Res 83:209–215

    Article  PubMed  CAS  Google Scholar 

  30. Schwob JE, Mieleszko Szumowski KE, Stasky AA (1992) Olfactory sensory neurons are trophically dependent on the olfactory bulb for their prolonged survival. J Neurosci 12:3896–3919

    PubMed  CAS  Google Scholar 

  31. Farbman AI (1990) Olfactory neurogenesis: genetic or environmental controls? Trends Neurosci 13:362–365

    Article  PubMed  CAS  Google Scholar 

  32. Schwob JE (2002) Neural regeneration and the peripheral olfactory system. Anat Rec 269:33–49

    Article  PubMed  Google Scholar 

  33. Rodriguez-Gil DJ, Treloar HB, Zhang X, Miller AM, Two A, Iwema C, Firestein SJ, Greer CA (2010) Chromosomal location-dependent nonstochastic onset of odor receptor expression. J Neurosci 30:10067–10075

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (30772414 and 30901209).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuejun Jiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hao, S., Yu, F., Yan, A. et al. In Utero and Lactational Lanthanum Exposure Induces Olfactory Dysfunction Associated with Downregulation of βIII-tubulin and Olfactory Marker Protein in Young Rats. Biol Trace Elem Res 148, 383–391 (2012). https://doi.org/10.1007/s12011-012-9386-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-012-9386-9

Keywords

Navigation