Skip to main content
Log in

The Effects of Chromium Complex and Level on Glucose Metabolism and Memory Acquisition in Rats Fed High-Fat Diet

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Conditions in which glucose metabolism is impaired due to insulin resistance are associated with memory impairment. It was hypothesized that supplemental chromium (Cr) may alleviate insulin resistance in type 2 diabetes and consequently improve memory acquisition, depending upon its source and level. In a complete randomized design experiment, male Wistar rats (n = 60; weighing 200–220 g) were fed either normal (8%, normal diet (ND)) or high-fat (40%, high-fat diet (HFD)) diet and supplemented with Cr as either chromium-glycinate (CrGly) or chromium-acetate (CrAc) at doses of 0, 40, or 80 μg/kg body weight (BW) via drinking water from 8 to 20 weeks of age. Feeding HFD induced type 2 diabetes, as reflected by greater glucose/insulin ratio (2.98 vs. 2.74) comparing to feeding ND. Moreover, HFD rats had greater BW (314 vs. 279 g) and less serum (53 vs. 68 μg/L) and brain (14 vs. 24 ng/g) Cr concentrations than ND rats. High-fat diet caused a 32% reduction in expressions of glucose transporters 1 and 3 (GLUTs) in brain tissue and a 27% reduction in mean percentage time spent in the target quadrant and a 38% increase in spatial memory acquisition phase (SMAP) compared with ND. Compared with supplemental Cr as CrAc, CrGly was more effective to ameliorate response variables (i.e., restoration of tissue Cr concentration, enhancement of cerebral GLUTs expressions, and reduction of the glucose/insulin ratio and SMAP) in a dose–response manner, especially in rats fed HFD. Supplemental Cr as CrGly may have therapeutic potential to enhance insulin action and alleviate memory acquisition in a dose-dependent manner, through restoring tissue Cr reserve and enhancing cerebral GLUTs expressions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lau FC, Bagchi M, Sen CK et al (2008) Nutrigenomic basis of beneficial effects of chromium(III) on obesity and diabetes. Mol Cell Biochem 317:1–10

    Article  PubMed  CAS  Google Scholar 

  2. Stranahan AM, Norman ED, Lee K et al (2008) Diet induced insulin resistance impairs hippocampal synaptic plasticity and cognition in middle-aged rats. Hippocampus 18:1085–1088

    Article  PubMed  Google Scholar 

  3. Nilsson LG, Nilsson E (2009) Overweight and cognition. Scan J Psychol 50:660–507

    Article  Google Scholar 

  4. Morris BW, MacNeil S, Hardisty CA et al (1999) Chromium homeostasis in patients with type II (NIDDM) diabetes. J Trace Elem Med Biol 13:57–61

    PubMed  CAS  Google Scholar 

  5. Anderson RA (2003) Chromium and insulin resistance. Nutr Res Rev 16:267–275

    Article  PubMed  CAS  Google Scholar 

  6. Vincent JB (2000) The biochemistry of chromium. J Nutr 130:715–718

    PubMed  CAS  Google Scholar 

  7. Cefalu WT, Wang ZQ, Zhang XH et al (2002) Oral chromium picolinate improves carbohydrate and lipid metabolism and enhances skeletal muscle glut-4 translocation in obese, hyperinsulinemic (JCR-LA corpulent) rats. J Nutr 132:1107–1114

    PubMed  CAS  Google Scholar 

  8. Chen WY, Chen CJ, Liu CH et al (2009) Chromium supplementation enhances insulin signalling in skeletal muscle of obese KK/HlJ diabetic mice. Diabetes Obes Metab 11:293–303

    Article  PubMed  CAS  Google Scholar 

  9. Wang ZQ, Zhang XH, Russell JC et al (2006) Chromium picolinate enhances skeletal muscle cellular insulin signaling in vivo in obese insulin-resistant JCR: LA-cp rats. J Nutr 136:415–420

    PubMed  CAS  Google Scholar 

  10. McLeod MN, Gaynes BN, Golden RN (1999) Chromium potentiation of antidepressant pharmacotherapy for dysthymic disorder in 5 patients. J Clin Psychiatry 60:237–240

    Article  PubMed  CAS  Google Scholar 

  11. McLeod MN, Golden RN (2000) Chromium treatment of depression. Int J Neuropsychopharmacol 3:311–314

    Article  PubMed  CAS  Google Scholar 

  12. Shinde UA, Sharma G, Xu YJ et al (2004) Insulin sensitising action of chromium picolinate in various experimental models of diabetes mellitus. J Trace Elem Med Biol 18:23–32

    Article  CAS  Google Scholar 

  13. Clodfelder BJ, Chang C, Vincent JB (2004) Absorption of the biomimetic chromium cation triaqua-mu(3)-oxo-mu-hexapropionatotrichromium(III) in rats. Biol Trace Elem Res 98:159–69

    Article  PubMed  CAS  Google Scholar 

  14. Preuss HG, Echard B, Perricone NV et al (2008) Comparing metabolic effects of six different commercial trivalent chromium compounds. J Inorg Biochem 102:1986–1990

    Article  PubMed  CAS  Google Scholar 

  15. Mackowiak P, Krejpcio Z, Sassek M et al (2010) Evaluation of insulin binding and signaling activity of newly synthesized chromium(III) complexes in vitro. Mol Med Rep 3:347–353

    CAS  Google Scholar 

  16. Wieczorek D, Szymusiak H, Wieloch A et al (2005) Selected methods of identification and purity assessment of biomimetic chromium(III) complex with propionic acid. J Hum Nutr Metabol 32:880–885

    Google Scholar 

  17. Wieczorek D, Wieloch A, Krejpcio Z (2007) Synthesis and selected physicochemical properties of novel chromium(III) complexes with acetic and n-valeric acids. Curr Trends Commodity Sci II:1059–66

    Google Scholar 

  18. Krejpcio Z, Szymusiak H, Wójciak RW et al (2005) Biologically active chromium(III) compounds and their significance in human nutrition and pharmacotherapy. J Hum Nutr Metabol 32:495–498

    Google Scholar 

  19. Winocur G, Greenwood CE, Piroli GG et al (2005) Memory impairment in obese Zucker rats: an investigation of cognitive function in an animal model of insulin resistance and obesity. Behav Neurosci 119:1389–1395

    Article  PubMed  CAS  Google Scholar 

  20. AOAC (1990) Official methods of analysis, 15th edn. Association of Official Analytical Chemists, Washington, DC

    Google Scholar 

  21. Morris RG, Garrud P, Rawlins JN et al (1982) Place navigation impaired in rats with hippocampal lesions. Nature 297:681–683

    Article  PubMed  CAS  Google Scholar 

  22. Baydas G, Yasar A, Tuzcu M (2005) Comparison of the impact of melatonin on chronic ethanol induced learning and memory impairment between young and aged rats. J Pineal Res 39:346–352

    Article  PubMed  CAS  Google Scholar 

  23. Kamal A, Biessels GJ, Duis SE et al (2000) Learning and hippocampal synaptic plasticity in streptozotocin-diabetic rats: interaction of diabetes and ageing. Diabetologia 43:500–506

    Article  PubMed  CAS  Google Scholar 

  24. Dogukan A, Sahin N, Tuzcu M et al (2009) The effects of chromium histidinate on mineral status of serum and tissue in fat-fed and streptozotocin-treated type II diabetic rats. Biol Trace Elem Res 131:124–132

    Article  PubMed  CAS  Google Scholar 

  25. SAS (2002) User’s Guide. Statistics Version 9th. Statistical Analysis System. SAS Inst. Inc, Cary, NC

    Google Scholar 

  26. Littell CR, Milliken GA, Stroup WW et al (1996) SAS® System for Mixed Models. SAS Inst. Inc., Cary, NC

    Google Scholar 

  27. Anderson RA (1998) Chromium glucose intolerance and diabetes. J Am Coll Nutr 17:548–555

    PubMed  CAS  Google Scholar 

  28. Vincent JB (2004) Recent advances in the nutritional biochemistry of trivalent chromium. Proc Nutr Soc 63:41–47

    Article  PubMed  CAS  Google Scholar 

  29. Vincent JB (2003) Recent advances in the biochemistry of chromium(III). J Trace Elem Exp Med 16:227–236

    Article  CAS  Google Scholar 

  30. Kazi TG, Afridi HI, Kazi N et al (2008) Copper chromium manganese iron nickel and zinc levels in biological samples of diabetes mellitus patients. Biol Trace Elem Res 122:1–18

    Article  PubMed  CAS  Google Scholar 

  31. Reed MJ, Meszaros K, Entes LJ et al (2000) A new rat model of type 2 diabetes: the fat-fed streptozotocin-treated rat. Metabolism 49:1390–1394

    Article  PubMed  CAS  Google Scholar 

  32. Sahin K, Onderci M, Tuzcu M et al (2007) Effect of chromium on carbohydrate and lipid metabolism in a rat model of type 2 diabetes mellitus: the fat-fed streptozotocin-treated rat. Metab Clin Exp 56:1233–1240

    Article  PubMed  CAS  Google Scholar 

  33. Broadhurst CL, Domenico P (2006) Clinical studies on chromium picolinate supplementation in diabetes mellitus: a review. Diabetes Technol Ther 8:677–887

    Article  PubMed  CAS  Google Scholar 

  34. Striffler JS, Law JS, Polansky MM et al (1995) Chromium improves insulin-response to glucose in rats. Meta Clin Exp 44:1314–1320

    Article  CAS  Google Scholar 

  35. Machalinski B, Walczak M, Syrenicz A et al (2006) Hypoglycemic potency of novel trivalent chromium in. J Trace Elem Med Biol 20:33–39

    Article  PubMed  CAS  Google Scholar 

  36. Sun YJ, Clodfelder BJ, Shute AA et al (2002) The biomimetic [Cr3O(O2CCH2CH3)6(H2O)3]+ decreases plasma insulin, cholesterol, and triglycerides in healthy and type II diabetic rats but not type I diabetic rats. J Biol Inorg Chem 7:852–862

    Article  PubMed  CAS  Google Scholar 

  37. Ghosh D, Bhattacharya B, Mukherjee B et al (2002) Role of chromium supplementation in Indians with type 2 diabetes mellitus. J Nutr Biochem 13:690–697

    Article  PubMed  CAS  Google Scholar 

  38. Clodfelder BJ, Gullick BM, Lukaski HC et al (2005) Oral administration of the biomimetic [Cr3O(O2CCH2CH3)6(H2O)3]+ increases insulin sensitivity and improves blood plasma variables in healthy and type 2 diabetic rats. J Biol Inorg Chem 10:119–130

    Article  PubMed  CAS  Google Scholar 

  39. Anderson RA (2000) Chromium in the prevention and control of diabetes. Diabetes Metab 26:22–27

    PubMed  CAS  Google Scholar 

  40. Vincent JB, Bennett R (2007) Potential and purported roles for chromium in insulin signaling: the search for the holy grail. In: Vincent JB (ed) The nutritional biochemistry of chromium(III). Elsevier, Amsterdam, pp 139–60

    Chapter  Google Scholar 

  41. Mantych G, James DE, Chung HD et al (1992) Cellular localization and characterization of Glut 3 glucose transporter isoform in human brain. Endocrinology 131:1270–1278

    Article  PubMed  CAS  Google Scholar 

  42. Nagamatsu S, Kornhauser JM, Burant CF et al (1992) Glucose transporter expression in brain. J Biol Chem 267:467–472

    PubMed  CAS  Google Scholar 

  43. Devaskar S, Zahm DS, Holtzclaw L et al (1991) Developmental regulation of the distribution of rat brain insulin-insensitive (Glut 1) glucose transporter. Endocrinology 12:1530–1540

    Article  Google Scholar 

  44. Simpson IA, Dwyer D, Malide D et al (2008) The facilitative glucose transporter GLUT3: 20 years of distinction. Am J Physiol Endocrinol Metab 295:242–253

    Article  Google Scholar 

  45. Furler SM, Jenkins AB, Storlein LH et al (1991) In vivo location of the rate-limiting step of hexose uptake in muscle and brain tissue of rats. Am J Physiol 26:337–447

    Google Scholar 

  46. McCarty MF (1994) Enhancing central and peripheral insulin activity as a strategy for the treatment of endogenous-depression—an adjuvant role for chromium picolinate. Med Hypotheses 43:247–452

    Article  PubMed  CAS  Google Scholar 

  47. Ryan CM, Freed MI, Rood JA et al (2006) Improving metabolic control leads to better working memory in adults with type 2 diabetes. Diab Care 29:345–351

    Article  Google Scholar 

  48. Stewart R, Liolitsa D (1999) Type 2 diabetes mellitus cognitive impairment and dementia. Diabet Med 16:93–112

    Article  PubMed  CAS  Google Scholar 

  49. Pavlović DM, Pavlović AM (2008) Dementia and diabetes mellitus. Srp Arh Celok Lek 136:170–175

    Article  PubMed  Google Scholar 

  50. Whitmer RA (2007) Type 2 diabetes and risk of cognitive impairment and dementia. Curr Neurol Neurosci Rep 7:373–380

    Article  PubMed  CAS  Google Scholar 

  51. Zarros A, Liapi C, Galanopoulou P et al (2009) Effects of adult-onset streptozotocin-induced diabetes on the rat brain antioxidant status and the activities of acetylcholinesterase (Na(+)K (+))- and Mg(2+)-ATPase: modulation by l-cysteine. Metab Brain Dis 24:337–348

    Article  PubMed  CAS  Google Scholar 

  52. Reagan LP (2007) Insulin signaling effects on memory and mood. Curr Opin Pharmacol 7:633–637

    Article  PubMed  CAS  Google Scholar 

  53. De la Monte SM, Tong M, Lawton M et al (2009) Nitrosamine exposure exacerbates high fat diet-mediated type 2 diabetes mellitus non-alcoholic steatohepatitis and neurodegeneration with cognitive impairment. Mol Neurodegeneration 24:4–54

    Google Scholar 

  54. Barrou Z, Lemaire A, Boddaert J et al (2008) Diabetes mellitus and cognition: is there a link? Psychol Neuropsychiatr Vieil 6:189–198

    PubMed  Google Scholar 

  55. Bruehl H, Wolf OT, Sweat V et al (2009) Modifiers of cognitive function and brain structure in middle-aged and elderly individuals with type 2 diabetes mellitus. Brain Res 1280:186–194

    Article  PubMed  CAS  Google Scholar 

  56. Beauquis J, Homo-Delarche F, Giroix MH et al (2010) Hippocampal neurovascular and hypothalamic-pituitary-adrenal axis alterations in spontaneously type 2 diabetic GK rats. Exp Neurol 222:125–134

    Article  PubMed  CAS  Google Scholar 

  57. Refaie FM, Esmat AY, Mohamed AF et al (2009) Effect of chromium supplementation on the diabetes induced-oxidative stress in liver and brain of adult rats. Biometals 22:1075–1087

    Article  PubMed  CAS  Google Scholar 

  58. Hallschmid M, Schultes B (2009) Central nervous insulin resistance: a promising target in the treatment of metabolic and cognitive disorders? Diabetologia 52:2264–2269

    Article  PubMed  CAS  Google Scholar 

  59. Attenburrow MJ, Odontiadis J, Murray BJ et al (2002) Chromium treatment decreases the sensitivity of 5-HT2A receptors. Psychopharmacology 159:432–436

    Article  PubMed  CAS  Google Scholar 

  60. Davidson JR, Abraham K, Connor KM et al (2003) Effectiveness of chromium in atypical depression: a placebo-controlled trial. Biol Psychiatry 53:261–264

    Article  PubMed  CAS  Google Scholar 

  61. Docherty JP, Sack DA, Roffman M et al (2005) A double-blind placebo controlled exploratory trial of chromium picolinate in atypical depression: effect on carbohydrate craving. J Psychiatr Pract 11:302–314

    Article  PubMed  Google Scholar 

  62. Moreira T, Malec E, Ostenson CG et al (2007) Diabetic type II Goto Kakizaki rats show progressively decreasing exploratory activity and learning impairments in fixed and progressive ratios of a lever-press task. Behav Brain Res 180:28–41

    Article  PubMed  CAS  Google Scholar 

  63. Khanam R, Pillai KK (2006) Effect of chromium picolinate on modified forced swimming test in diabetic rats: involvement of serotonergic pathways and potassium channels. Basic Clin Pharmacol Toxicol 98:155–159

    Article  PubMed  CAS  Google Scholar 

  64. Franklin M, Odontiadis J (2003) Effects of treatment with chromium picolinate on peripheral amino acid availability and brain monoamine function in the rat. Pharmacopsychiatry 36:176–180

    PubMed  CAS  Google Scholar 

  65. Khanam R, Pillai KK (2007) Effect of chronic chromium picolinate in animal models of anxiety and memory. Fundam Clin Pharmacol 21:531–534

    Article  PubMed  CAS  Google Scholar 

  66. Piotrowska A, Młyniec K, Siwek A et al (2008) Antidepressant-like effect of chromium chloride in the mouse forced swim test: involvement of glutamatergic and serotonergic receptors. Pharmacol Rep 60:991–995

    PubMed  CAS  Google Scholar 

  67. Bailey MM, Boohaker JG, Jernigan PL et al (2008) Effects of pre- and postnatal exposure to chromium picolinate or picolinic acid on neurological development in CD-1 mice. Biol Trace Elem Res 124:70–82

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Veterinary Control and Research Institute of Elazig for providing the experimental facility and Firat University for supporting this experiment. The authors have no conflicting financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazim Sahin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sahin, K., Tuzcu, M., Orhan, C. et al. The Effects of Chromium Complex and Level on Glucose Metabolism and Memory Acquisition in Rats Fed High-Fat Diet. Biol Trace Elem Res 143, 1018–1030 (2011). https://doi.org/10.1007/s12011-010-8905-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-010-8905-9

Keywords

Navigation