Skip to main content
Log in

Cadmium Affects the Glutathione/Glutaredoxin System in Germinating Pea Seeds

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The aim of this work was to investigate the effects of cadmium (Cd) on thiol and especially glutathione (GSH)-dependent reactions (glutathione content, glutaredoxin (Grx) content and activity, “glutathione” peroxidase (Gpx) activity, and glutathione reductase (GR) activity) in germinating pea seeds. Under Cd stress conditions, the overall activity as well as more specifically the expression of Grx C4 and Grx S12 increased. On the contrary, when incubated with Cd ions in vitro, the disulfide reductase activity of both isoforms was drastically inhibited. In the case of Grx C4, this correlated with the formation of protein dimers of 28 kDa as evidenced by electrophoresis analysis. Oxidative stress also affected the GSH status, since Cd treatment provoked (1) a pronounced stimulation in Gpx (a thioredoxin-dependent enzyme in plants) expression and (2) a drastic decrease in GR activity. These results are discussed in relation with the known contribution of Grx system to the thiol status during the germination of Cd-poisoned pea seeds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

Cd:

Cadmium

DTT:

Dithiothreitol

DW:

Dry weight

FW:

Fresh weight

GPX:

Glutathione peroxidase

GR:

Glutathione reductase

Grx:

Glutaredoxin

GSH:

Glutathione

HED:

Hydroxyethyl disulfide

β-MET:

β-Mercaptoethanol

References

  1. Wagner GJ (1993) Accumulation of cadmium in crop plants and its consequences to human health. Adv Agron 51:173–212

    Article  CAS  Google Scholar 

  2. Ernst WHO (1998) Effects of heavy metals in plants at the cellular and organismic level ecotoxicology. In: Gerrit S, Bernd M (eds) Bioaccumulation and biological effects of chemicals. Wiley, Heidelberg, pp 587–620

  3. Chugh LK, Sawhney SK (1996) Effect of cadmium on germination, amylases and rate of respiration of germinating pea seeds. Environ Pollut 92:1–5

    Article  PubMed  CAS  Google Scholar 

  4. Chaoui A, Jarrar B, El Ferjani E (2004) Effects of cadmium and copper on peroxidase, NADH oxidase and IAA oxidase activities in cell wall, soluble and microsomal membrane fractions of pea roots. J Plant Physiol 161:1225–1234

    Article  PubMed  CAS  Google Scholar 

  5. Chaoui A, El Ferjani E (2005) Effects of cadmium and copper on antioxidant capacities, lignification and auxin degradation in leaves of pea (Pisum sativum L.) seedling. C R Biol 328:23–31

    Article  PubMed  CAS  Google Scholar 

  6. Mihoub A, Chaoui A, El Ferjani E (2005) Biochemical changes associated with cadmium and copper stress in germinating pea seeds (Pisum sativum L.). C R Biol 328:33–41

    Article  PubMed  CAS  Google Scholar 

  7. Rahoui S, Chaoui A, El Ferjani E (2008) Differential sensitivity to cadmium in germinating seeds of three cultivars of faba bean (Vicia faba L.). Acta Physiol Plant 30:451–456

    Article  Google Scholar 

  8. Smiri M, Chaoui A, El Ferjani E (2009) Respiratory metabolism in the embryonic axis of germinating pea seed exposed to cadmium. J Plant Physiol 166:259–269

    Article  PubMed  CAS  Google Scholar 

  9. Aina R, Labra M, Fumagalli P, Vannini C, Marsoni M, Cucchi U, Bracale M, Sgorbati S, Citterio S (2007) Thiol-peptide level and proteomic changes in response to cadmium toxicity in Oryza sativa L. roots. Environ Exp Bot 59:381–392

    Article  CAS  Google Scholar 

  10. Cobbet CS (2000) Phytochelatin biosynthesis and function in heavy-metal detoxification. Curr Opin Plant Biol 3:211–216

    Google Scholar 

  11. Lee KO, Lee JR, Yoo JY (2002) GSH-dependent peroxidase activity of the rice (Oryza sativa) glutaredoxin, a thioltransferase. Biochem Biophys Res Commun 296:1152–1156

    Article  PubMed  CAS  Google Scholar 

  12. Gelhaye E, Rouhier N, Jacquot JP (2003) Evidence for a subgroup of thioredoxin h that requires GSH/Grx for its reduction. FEBS Lett 555:443–448

    Article  PubMed  CAS  Google Scholar 

  13. Fernandes AP, Holmgren A (2004) Glutaredoxins: glutathione dependent redox enzymes with functions far beyond a simple thioredoxin backup system. Antioxid Redox Signal 6:63–74

    Article  PubMed  CAS  Google Scholar 

  14. Rouhier N, Gelhaye E, Jacquot JP (2004) Plant glutaredoxins: still mysterious reducing systems. Cell Mol Life Sci 61:1266–1277

    Article  PubMed  CAS  Google Scholar 

  15. Rouhier N, Stéphane DL, Jacquot JP (2008) The role of glutathione in photosynthetic organisms, emerging functions for glutaredoxins and glutathionylation. Ann Rev Plant Biol 59:143–166

    Article  CAS  Google Scholar 

  16. Rouhier N, Couturier J, Johnson MK, Jacquot JP (2010) Glutaredoxins: roles in iron homeostasis. Trends Biochem Sci 35:43–52

    Article  PubMed  CAS  Google Scholar 

  17. Rouhier N, Gelhaye E, Jacquot JP (2002) Exploring the active site of plant glutaredoxin by site-directed mutagenesis. FEBS Lett 511:145–149

    Article  PubMed  CAS  Google Scholar 

  18. Lemaire SD (2004) The glutaredoxin family in oxygenic photosynthetic organisms. Photosynth Res 79:305–318

    Article  PubMed  CAS  Google Scholar 

  19. Schwarzländer M, Fricker MD, Sweetlove LJ (2009) Monitoring the in vivo redox state of plant mitochondria: effect of respiratory inhibitors, abiotic stress and assessment of recovery from oxidative challenge. Biochim Biophys Acta 1787:468–475

    Article  PubMed  Google Scholar 

  20. Douce R, Christensen EL, Bonner RWJR (1972) Preparation of intact plant mitochondria. Biochim Biophys Acta 275:148–160

    Article  PubMed  CAS  Google Scholar 

  21. Foyer CH, Halliwell B (1976) The presence of gluthathione and gluthathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism. Planta 133:21–25

    Article  Google Scholar 

  22. Navrot N, Collin V, Gualberto J, Gelhaye E, Hirasawa M, Rey P, Knaff DB, Issakidis E, Jacquot JP, Rouhier N (2006) Plant glutathione peroxidases are functional peroxiredoxins distributed in several subcellular compartments and regulated during biotic and abiotic stresses. Plant Physiol 142:1364–1379

    Article  PubMed  CAS  Google Scholar 

  23. Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–77

    Article  PubMed  CAS  Google Scholar 

  24. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantity of protein utilizing the principle of protein dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  25. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  26. Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 76:4350–4354

    Article  PubMed  CAS  Google Scholar 

  27. Anderson ME (1985) Determination of glutathione and glutathione disulfide in biological samples. Meth Enzymol 113:548–555

    Article  PubMed  CAS  Google Scholar 

  28. Diotte NM, Xiong Y, Gao J, Chua BHL, Ho YS (2009) Attenuation of doxorubicin-induced cardiac injury by mitochondrial glutaredoxin 2. Biochim Biophys Acta 1793:427–438

    Article  PubMed  CAS  Google Scholar 

  29. Vallee BL, Ulmer DD (1972) Biochemical effects of mercury, cadmium, and lead. Annu Rev Biochem 41:91–128

    Article  PubMed  CAS  Google Scholar 

  30. Van Assche F, Clijsters H (1990) Effects of metals on enzyme activity in plants. Plant Cell Environ 13:195–206

    Article  Google Scholar 

  31. Stochs SJ, Bagchi D (1995) Oxidative mechanism in the toxicity of metal ions. Free Radic Biol Med 18:321–336

    Article  Google Scholar 

  32. Isakov N, Witte S, Altman A (2000) PICOT-HD: a highly conserved protein domain that is often associated with thioredoxin and glutaredoxin modules. Trends Biochem Sci 25:537–539

    Article  PubMed  CAS  Google Scholar 

  33. Foyer CH, Noctor G (2009) Redox regulation in photosynthetic organisms: signaling, acclimation, and practical implications. Antioxid Redox Signal 11:861–905

    Article  PubMed  CAS  Google Scholar 

  34. Noriega GO, Balestrasse KB, Batlle A, Tomaro ML (2007) Cadmium induced oxidative stress in soybean plants also by the accumulation of δ-aminolevulinic acid. Biometals 20:841–851

    Article  PubMed  CAS  Google Scholar 

  35. Yannarelli GG, Fernández-Alvarez AJ, Santa-Cruz DM, Tomaro ML (2007) Glutathione reductase activity and isoforms in leaves and roots of wheat plants subjected to cadmium stress. Phytochemistry 68:505–512

    Article  PubMed  CAS  Google Scholar 

  36. May MJ, Vernoux T, Leaver C, Van Montagu M, Inzé D (1998) Glutathione homeostasis in plants: implications for environmental sensing and plant development. J Exp Bot 49:649–667

    Article  CAS  Google Scholar 

  37. Yano H, Wong JH, Cho MJ, Buchnan BB (2001) Redox changes accompanying the degradation of seed storage proteins in germinating rice. Plant Cell Physiol 42:879–883

    Article  PubMed  CAS  Google Scholar 

  38. Foyer CH, Noctor G (2003) Redox sensing and signaling associated with reactive oxygen in chloroplast, peroxisomes and mitochondria. Physiol Plant 119:355–364

    Article  CAS  Google Scholar 

  39. Wojtyla Ł, Garnczarska M, Zalewski T, Bednarski W, Ratajczak L, Jurga S (2006) A comparative study of water distribution, free radical production and activation of antioxidative metabolism in germinating pea seeds. J Plant Physiol 163:1207–1220

    Article  PubMed  CAS  Google Scholar 

  40. Posmyk MM, Kontek R, Janas KM (2009) Antioxidant enzymes activity and phenolic compounds content in red cabbage seedlings exposed to copper stress. Ecotoxicol Environ Saf 72:596–602

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Financial support for this work was received from the Tunisian Ministry of Higher Education, Scientific Research, and Technology (99/UR/09-18) and INRA-Henri Poincaré University, French (grant to Moêz Smiri).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ezzedine El Ferjani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smiri, M., Chaoui, A., Rouhier, N. et al. Cadmium Affects the Glutathione/Glutaredoxin System in Germinating Pea Seeds. Biol Trace Elem Res 142, 93–105 (2011). https://doi.org/10.1007/s12011-010-8749-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-010-8749-3

Keywords

Navigation