Skip to main content
Log in

A Basic Study on the Biological Monitoring for Vanadium—Effects of Vanadium on Vero Cells and the Evaluation of Intracellular Vanadium Contents

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

A high concentration of vanadium (V) has toxic effects on human and animals and is one of environmental pollutants. In the present study, we have conducted a fundamental study using cultured Vero cells from monkey kidney for the future environmental monitoring. Orthovanadate (VAN), one of V compounds, of 10−10 and 10−8 M did not affect the cell growth although the higher concentration of above 10−6 M VAN inhibited the cell growth accompanied with the decrease in cell numbers and morphological changes. Given that the washing method with ice-cold Li is also effective for determination of the cellular Na content, we used this method for the determination of the V content of the Vero cells. The V distributions in Vero cell; in the 10−3 M VAN solution, extracellular and intracellular were obtained as 1:0.564:0.036 and 1:0.662:0.098 at 60 and 120 min after the treatment of VAN. The intracellular V content was 10% of the applied concentration of VAN. Consequently, it was suggested that V concentration of 10−7 and 10−6 M in the tissue and environment, respectively, might become the threshold concentration; a criterion of the environmental contamination when we carry out environmental monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hopkins LL Jr, Tilton BE (1966) Metabolism of trace amounts of vanadium 48 in rat organs and liver subcellular particles. Am J Physiol 211:169–172

    PubMed  CAS  Google Scholar 

  2. Hopkins LL Jr, Mohr HE (1974) Proceedings: vanadium as an essential nutrient. Fed Proc 33:1773–1775

    PubMed  CAS  Google Scholar 

  3. Schwartz K, Mile DB (1971) Growth effects of vanadium in the rat. Sci 174:426–428

    Article  Google Scholar 

  4. Nakai M, Watanabe H, Fujiwara C, Kakegawa H, Satoh T, Takada J, Matsushita R, Sakurai H (1995) Mechanism on insulin-like action of vanadyl sulfate: studies on interaction between rat adipocytes and vanadium compounds. Biol Pharm Bull 18:719–725

    PubMed  CAS  Google Scholar 

  5. Sakurai H, Tsuchiya K, Nukatsuka M, Sofue M, Kawada J (1990) Insulin-like effect of vanadyl ion on streptozotocin-induced diabetic rats. J Endocrinol 126:451–459

    Article  PubMed  CAS  Google Scholar 

  6. Rehder D (2003) Biological and medicinal aspects of vanadium. I Inorg Chem Commun 6:604–617

    Article  CAS  Google Scholar 

  7. Cantley LC, Josephson L, Warner R, Yanagisawa M, Lechene C, Guidotti G (1977) Vanadate is a potent (Na+ + K+)ATPase inhibitor found in ATP derived from muscle. J Biol Chem 252:7421–7423

    PubMed  CAS  Google Scholar 

  8. Cantley LC Jr, Cantley LG, Josephson L (1978) A characterization of vanadate interactions with the (Na+ + K+) ATPase. J Biochem 253:7361–7368

    CAS  Google Scholar 

  9. Cantley LC Jr, Resh MD, Guidotti G (1978) Vanadate inhibits the red cell (Na+ + K+) ATPase from the cytoplasmic side. Nature 272:552–554

    Article  PubMed  CAS  Google Scholar 

  10. DiPolo R, Rojas HR, Beauge L (1979) Vanadate inhibits uncoupled Ca efflux but not Na-Ca exchange in squid axons. Nature 281:229–230

    Article  PubMed  CAS  Google Scholar 

  11. Barrabin H, Grrahan PJ, Rega AF (1980) Vanadate inhibition of the Ca-ATPase from human red cell membrane. Biochim Biophys Acta 600:796–804

    Article  PubMed  CAS  Google Scholar 

  12. Nayler RA, Sparrow MP (1983) Mechanism of vanadate-induced contraction of airway smooth muscle of the guinea-pit. Brit J Pharmacol 80:163–172

    CAS  Google Scholar 

  13. Ueda F, Kishimoto T, Ozaki H, Urakawa N (1982) Dual actions of vanadate on high K-induced contraction in guinea pig taenia coli. Jpn J Pharmacol 32:149–157

    Article  PubMed  CAS  Google Scholar 

  14. Ueda F, Kishimoto T, Ozaki H, Karaki H, Urakawa N (1984) Effects of vanadate on mechanical and electrical activities in guinea pig taenia coli. Nippon Heikatsukin Gakkai Zasshi 20:85–93

    PubMed  CAS  Google Scholar 

  15. Ozaki H, Ueda F, Urakawa N (1982) Inhibitory effects of vanadate on the contractile responses in vascular smooth muscle. Eur J Pharmacol 80:317–322

    Article  PubMed  CAS  Google Scholar 

  16. Ueda F, Karaki H, Urakawa N (1985) Contractile effects of vanadate on monkey and rabbit tracheal smooth muscle. Arch Int Pharmacodyn Thér 276:120–132

    PubMed  CAS  Google Scholar 

  17. Ueda F, Urakawa N (1983) Influence of DIDS on the dual actions of vanadate on high K-induced contraction in the guinea pig taenia coli. Jpn J Pharmacol 33:894–896

    Article  PubMed  CAS  Google Scholar 

  18. Mochizuki M, Ueda F, Hondo R (1997) Relation between the high K induced tension and cellular vanadium contents in isolated tissues of guinea pig (in Japanese). The 124th Meeting of Japanese Society of Veterinary Science. Tokyo Press Co, Kagoshima, Japan

    Google Scholar 

  19. Mochizuki M, Ueda F, Sano T, Hondo R (2000) Relationship between vanadate induced relaxation and vanadium content in guinea pig taenia coli. Can J Physiol Pharmacol 78:339–342

    Article  PubMed  CAS  Google Scholar 

  20. NAS (1974) Medical and biologic effects of environmental pollutants, vanadium, National Academy of Sciences. National Research Council, Division of Chemistry and Chemical Technology, Environmental studies board, Washington. (translation in Japanese: Ono, T., Wada, K., Tokyo Kagaku Dojin)

  21. Woodin MA, Liu Y, Neuberg D, Hauser R, Smith TJ, Christiani DC (2000) Acute respiratory symptoms in workers exposed to vanadium-rich fuel-oil ash. Am J Ind Med 37:353–363

    Article  PubMed  CAS  Google Scholar 

  22. Tosukhowong P, Tungsanga K, Eiam-Ong S, Sitprija V (1999) Environmental distal renal tubular acidosis in Thailand: an enigma. Am J Kidney Dis 33:1180–1186

    Article  PubMed  CAS  Google Scholar 

  23. Simonoff M, Conri C, Simonoff G (1986) Vanadium in depressive states. Acta Pharmacol Toxicol (Copenh) 59:463–466

    Article  Google Scholar 

  24. Kammerer M, Mastain O, Le Dréan-Quenech'du S, Pouliquen H, Larhantec M (2004) Liver and kidney concentrations of vanadium in oiled seabirds after the Erika wreck. Sci Total Environ 333:295–301

    Article  PubMed  CAS  Google Scholar 

  25. Mochizuki M, Ueda F, Hondo R (1998) Vanadium contents in organs of wild birds. J Trace Elem Exp Med 11:431

    Google Scholar 

  26. Mochizuki M, Ueda F, Sasaki S, Hondo R (1999) Vanadium contamination and the relation between vanadium and other elements in wild birds. Environ Pollut 106:249–251

    Article  PubMed  CAS  Google Scholar 

  27. Mackey EA, Becker PR, Demiralp R, Greenberg RR, Koster BJ, Wise SA (1996) Bioaccumulation of vanadium and other trace metals in livers of Alaskan cetaceans and pinnipeds. Arch Environ Contam Toxicol 30:503–512

    Article  PubMed  CAS  Google Scholar 

  28. Mochizuki M, Mori M, Hondo R, Ueda F (2008) A new index for evaluation of cadmium pollution in birds and mammals. Environ Monit Assess 137:35–49

    Article  PubMed  CAS  Google Scholar 

  29. Mochizuki M, Mori M, Hondo R, Ueda F (2009) Biological monitoring using a new technique. In: Harris JD, Brown PL (eds) Wildlife: destruction, conservation and biodiversity. Nova Science Publishers, NY, pp 293–300

    Google Scholar 

  30. Mochizuki M, Mori M, Hondo R, Ueda F (2010) A cadmium standard regression line: a possible new index for biological monitoring. In: El Ahmed N (ed) Impact, monitoring and management of environmental pollution. Nova Science Publishers, NY, in printing

    Google Scholar 

  31. Mochizuki M, Mori M, Hondo R, Ueda F (2010) The biological monitoring of wild birds, Part2: the possibility of a new index for biological monitoring. In: Daniels JA (ed) Advances in environmental research, volume 4. Nova Science Publishers, NY, in printing

    Google Scholar 

  32. Ueda F, Mochizuki M, Mori M, Hondo R (2009) A new technique for biological monitoring. In Mastorakis N, Helmis C, Papageorgios C, Bulucea CA, Panagopoulos T (ed) Energy, environment, ecosystems, development and landscape architecture, energy and environmental engineering series. WSEAS press, pp 176–184

  33. Mochizuki M, Mori M, Hondo R, Ueda F (2009) A new index for heavy metals in biological monitoring. In Mastorakis N, Helmis C, Papageorgios C, Bulucea CA, Panagopoulos T (ed) Energy, environment, ecosystems, development and landscape architecture, energy and environmental engineering series, WSEAS press, pp 185–191

  34. Friedman SM (1974) Lithium substitution and the distribution of sodium in the rat tail artery. Circ Res 34:168–175

    PubMed  CAS  Google Scholar 

  35. Kishimoto T, Ozaki H, Urakawa N (1980) A quantitative relationship between cellular Na accumulation and relaxation produced by ouabain in the depolarized smooth muscle of guinea pig taenia coli. Naunyn-Schmiedeberg's Arch Pharmacol 312:199–207

    Article  CAS  Google Scholar 

  36. Mochizuki M, Hondo R, Ueda F (2002) Simultaneous analysis for multiple heavy metals in contaminated biological samples. Biol Trace Elem Res 87:211–223

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This study was funded by grant No. 13660328 in 2001-2003 and grant No. 20580344-0001 (2008) from the Japanese Ministry of Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fukiko Ueda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mochizuki, M., Kudo, E., Kikuchi, M. et al. A Basic Study on the Biological Monitoring for Vanadium—Effects of Vanadium on Vero Cells and the Evaluation of Intracellular Vanadium Contents. Biol Trace Elem Res 142, 117–126 (2011). https://doi.org/10.1007/s12011-010-8741-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-010-8741-y

Keywords

Navigation