Skip to main content
Log in

Thallium Toxicity and its Interference with Potassium Pathways Tested on Various Cell Lines

  • Research
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Thallium (Tl) is a highly toxic heavy metal whose mechanism of toxicity is still not completely understood. The aim of this study was to test Tl cytotoxicity on several cell lines of different tissue origin in order to clarify specific Tl toxicity to a particular organ. In addition, possible interference of Tl with cell potassium (K) transport was examined. Human keratinocytes (HaCaT), human hepatocellular carcinoma (HepG2), porcine kidney epithelial cells (PK15), human neuroblastoma (SH-SY5Y) and Chinese hamster lung fibroblast cells (V79) were treated with thallium (I) acetate in a wide concentration range (3.9–500 µg/mL) for 24 h, 48 and 72 h. To assess competitive interaction between Tl and K, the cells were treated with four Tl concentrations close to IC50 (15.63, 31.25, 62.50, 125 µg/mL) in combination with/or without potassium (I) acetate (500 µg/mL). The cells’ morphology was monitored, and cytotoxic effect was assessed by 3-(4, 5-dimethylthiazole-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) test. The most sensitive to Tl exposure were SH-SY5Y cells, while HepG2 were the most resistant. The combined exposure to thallium (I) acetate and potassium (I) acetate for every cell line, except V79 cells, resulted in higher cell viability compared to thallium (I) acetate alone. The results of our study indicate that cell sensitivity to Tl treatment is largely affected by tissue culture origin, its function, and Na+/K+-ATPase activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The datasets generated and analysed during the current study are presented in the manuscript.

References

  1. Cvjetko P, Cvjetko I, Pavlica M (2010) Thallium toxicity in humans. Arh Hig Rada Toksikol 61(1):111–119. https://doi.org/10.2478/10004-1254-61-2010-1976

    Article  CAS  PubMed  Google Scholar 

  2. Cheam V (2001) Thallium Contamination of Water in Canada. Water Qual Res J 36(4):851–877. https://doi.org/10.2166/wqrj.2001.046

    Article  CAS  Google Scholar 

  3. Genchi G, Carocci A, Lauria G, Sinicropi MS, Catalano A (2021) Thallium Use, Toxicity, and detoxification therapy: an overview. Appl Sci 11(18):8322. https://doi.org/10.3390/app11188322

    Article  CAS  Google Scholar 

  4. Mulkey JP, Oehme FW (1993) A review of thallium toxicity. Veterinary and Human Toxicology 35:445– 453. PMID: 8249271

  5. Hanzel CE, Villarverde MS, Verstraeten SV (2005) Glutathione metabolism is impaired in vitro by thallium (III) hydroxide. Toxicology 207:501–510. https://doi.org/10.1016/j.tox.2004.11.002

    Article  CAS  PubMed  Google Scholar 

  6. Eskandari MR, Mashayekhi V, Aslani M, Hosseini MJ (2015) Toxicity of thallium on isolated rat liver mitochondria: the role of oxidative stress and MPT pore opening. Environ Toxicol 30(2):232–241. https://doi.org/10.1002/tox.21900

    Article  CAS  PubMed  ADS  Google Scholar 

  7. International Programme on Chemical Safety (IPCS) (1996) Thallium. Environmental health criteria, vol 182. World Health Organization, Geneva

    Google Scholar 

  8. Galván-Arzate S, Pedraza-Chaverri J, Medina-Campos ON, Maldonado PD, Vázquez-Román B, Ríos C, Santamaría A (2005) Delayed effects of thallium in the rat brain: regional changes in lipid peroxidation and behavioral markers, but moderate alterations in antioxidants, after a single administration. Food Chem Toxicol 43:1037–1045. https://doi.org/10.1016/j.fct.2005.02.006

    Article  CAS  PubMed  Google Scholar 

  9. Anaya-Ramos L, Díaz-Ruíz A, Ríos C, Mendez-Armenta M, Montes S, Aguirre-Vidal Y, García-Jiménez S, Baron-Flores V, Monroy-Noyola A (2021) The acute systemic toxicity of thallium in rats produces oxidative stress: attenuation by metallothionein and prussian blue. Biometals 34(6):1295–1311. https://doi.org/10.1007/s10534-021-00343-8

    Article  CAS  PubMed  Google Scholar 

  10. Chia CF, Chen SC, Chen CS, Shih CM, Lee HM, Wu CH (2005) Thallium acetate induces C6 glioma cell apoptosis. Ann N Y Acad Sci 1042:523–530. https://doi.org/10.1196/annals.1338.064

    Article  PubMed  ADS  Google Scholar 

  11. Krivohlavek A, Kuharić Ž, Marjanović Čermak AM, Šikić S, Pavičić I, Domijan AM (2021) Assessment of intracellular accumulation of cadmium and thallium. J Pharmacol Toxicol Methods 110:107087. https://doi.org/10.1016/j.vascn.2021.107087

    Article  CAS  PubMed  Google Scholar 

  12. Maya-López M, Mireles-García MV, Ramírez-Toledo M, Colín-González AL, Galván-Arzate S, Túnez I, Santamaría A (2018) Thallium-Induced toxicity in rat brain crude Synaptosomal/Mitochondrial fractions is sensitive to anti-excitatory and antioxidant agents. Neurotox Res 33(3):634–640. https://doi.org/10.1007/s12640-017-9863-1

    Article  CAS  PubMed  Google Scholar 

  13. Babić M, Radić S, Cvjetko P, Roje V, Pevalek-Kozlina B, Pavlica M (2009) Antioxidative response of Lemna minor plants exposed to thallium(I)-acetate. Aquat Bot 91(3):166–172. https://doi.org/10.1016/j.aquabot.2009.05.005

    Article  CAS  Google Scholar 

  14. Radić S, Cvjetko P, Glavas K, Roje V, Pevalek-Kozlina B, Pavlica M (2009) Oxidative stress and DNA damage in broad bean (Vicia faba L.) seedlings induced by thallium. Environ Toxicol Chem 28(1):189–196. https://doi.org/10.1897/08-188.1

    Article  PubMed  Google Scholar 

  15. Schindelin J, Arganda-Carreras I, Frise E et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682. https://doi.org/10.1038/nmeth.2019

    Article  CAS  PubMed  Google Scholar 

  16. Ritz C, Baty F, Streibig JC, Gerhard D (2015) Dose-response analysis using R. PLoS ONE 10(12):e0146021. https://doi.org/10.1371/journal.pone.0146021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kuznetsova A, Brockhoff PB, Christensen RHB (2017) lmerTest Package: tests in Linear mixed effects models. J Stat Softw 82(13):1–26. https://doi.org/10.18637/jss.v082.i13

    Article  Google Scholar 

  18. Verstraeten SV (2006) Relationship between thallium (I)-mediated plasma membrane fluidification and cell oxidants production in Jurkat T cells. Toxicology 222(1–2):95–102. https://doi.org/10.1016/j.tox.2006.01.028

    Article  CAS  PubMed  Google Scholar 

  19. Osorio-Rico L, Santamaria A, Galván-Arzate S (2017) Thallium Toxicity: General issues, neurological symptoms, and neurotoxic mechanisms. In: Aschner M, Costa L (eds) Neurotoxicity of metals. Advances in Neurobiology. Springer, pp 345–353. https://doi.org/10.1007/978-3-319-60189-2_17

  20. Achenbach C, Hauswirth O, Heindrichs C, Ziskoven R, Kohler F, Barh U, Heindrichs A, Schulten HR (1980) Quantitative measurement of time-dependent thallium distribution in organs of mice by field desorption mass spectrometry. J Toxicol Environ Health 6:519–528. https://doi.org/10.1080/15287398009529870

    Article  CAS  PubMed  Google Scholar 

  21. Galván-Arzate S, Santamaría A (1998) Thallium toxicity. Toxicol Lett 99:1–13. https://doi.org/10.1016/S0378-4274(98)00126-X

    Article  PubMed  Google Scholar 

  22. Clausen MV, Hilbers F, Poulsen H (2017) The structure and function of the na, K-ATPase isoforms in Health and Disease. Front Physiol 6(8):371. https://doi.org/10.3389/fphys.2017.00371

    Article  Google Scholar 

  23. Gupta RC (2018) Chap. 47 non-anticoagulant rodenticides. In: Gupta RC (ed) Veterinary toxicology, 3rd edn. Academic Press, pp 613–626. https://doi.org/10.1016/B978-0-12-811410-0.00047-7

  24. Geering K (1997) Na, K-ATPase. Current opinion in Nephrology and Hypertension. 6(5):434–439. https://doi.org/10.1097/00041552-199709000-00005

  25. Friedman J (2011) Why is the nervous system vulnerable to oxidative stress? In: Gadoth N, Göbel HH (eds) Oxidative stress and free radical damage in Neurology, oxidative stress in Applied Basic Research and Clinical Practice. Humana Press, pp 19–27

  26. Gilany K, Van Elzen R, Mous K, Coen E, Van Dongen W, Vandamme S, Gevaert K, Timmerman E, Vandekerckhove J, Dewilde S, Van Ostade X, Moens L (2008) The proteome of the human neuroblastoma cell line SH-SY5Y: an enlarged proteome. Biochim Biophys Acta 1784:983–985. https://doi.org/10.1016/j.bbapap.2008.03.003

    Article  CAS  PubMed  Google Scholar 

  27. Halliwell B, Gutteridge JMC (2007) Free radicals in biology and medicine, 4th edn. Oxford Univerity Press Inc, New York

    Google Scholar 

  28. Hanzel CE, Verstraeten SV (2006) Thallium induces hydrogen peroxide generation by impairing mitochondrial function. Toxicol Appl Pharmcol 216:485–492. https://doi.org/10.1016/j.taap.2006.07.003

    Article  CAS  Google Scholar 

  29. Hanzel CE, Verstraeten SV (2009) Tl (I) and tl (III) activate both mitochondrial and extrinsic pathways of apoptosis in rat pheochromocytoma (PC12) cells. Toxicol Appl Pharmcol 236(1):59–70. https://doi.org/10.1016/j.taap.2008.12.029

    Article  CAS  Google Scholar 

  30. Repetto G, Sanz P, Repetto M (1994) In vitro effects of thallium on mouse neuroblastoma cells. Toxicol in Vitro 8(4):609–611. https://doi.org/10.1016/0887-2333(94)90028-0

    Article  CAS  PubMed  Google Scholar 

  31. Fotakis G, Timbrell JA (2006) In vitro cytotoxicity assays: comparison of LDH, neutral red, MTT and protein assay in hepatoma cell lines following exposure to cadmium chloride. Toxicol Lett 160:171–177. https://doi.org/10.1016/j.toxlet.2005.07.001

    Article  CAS  PubMed  Google Scholar 

  32. Rangel-López E, Robles-Bañuelos B, Guadiana-Ramírez N et al (2022) Thallium induces antiproliferative and cytotoxic activity in Glioblastoma C6 and U373 cell cultures via apoptosis and changes in cell cycle. Neurotox Res 40:814–824. https://doi.org/10.1007/s12640-022-00514-6

    Article  CAS  PubMed  Google Scholar 

  33. John Peter AL, Viraraghavan T (2005) Thallium: a review of public health and environmental concerns. Environ Int 31(4):493–501. https://doi.org/10.1016/j.envint.2004.09.003

    Article  CAS  Google Scholar 

  34. Thiele JJ, Podda M, Packer L (1997) Tropospheric ozone: an emerging environmental stress to skin. Biol Chem 378(11):1299–1305. https://doi.org/10.1515/bchm.1997.378.11.1217

    Article  CAS  PubMed  Google Scholar 

  35. Hornig-Do HT, von Kleist-Retzow JC, Lanz K, Wickenhauser C, Kudin AP, Kunz WS, Wiesner RJ, Schauen M (2007) Human epidermal keratinocytes accumulate superoxide due to low activity of Mn-SOD, leading to mitochondrial functional impairment. J Invest Dermatol 127(5):1084–1093. https://doi.org/10.1038/sj.jid.5700666

    Article  CAS  PubMed  Google Scholar 

  36. Knasmüller S, Parzefall W, Sanyal R, Ecker S, Schwa C, Uhl M, Mersch-Sundermann V, Williamson G, Hietsch G, Langer T, Darroudi F, Natarajan AT (1998) Use of metabolically competent human hepatoma cells for the detection of mutagens and antimutagens. Mutat Res 402:185–202. https://doi.org/10.1016/S0027-5107(97)00297-2

    Article  PubMed  Google Scholar 

  37. Sanchez-Valle V, Chavez-Tapia NC, Uribe M, Mendez-Sanchez N (2012) Role of oxidative stress and molecular changes in liver fibrosis: a review. Curr Med Chem 19:4850–4860. https://doi.org/10.2174/092986712803341520

    Article  CAS  PubMed  Google Scholar 

  38. Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39(1):44–84. https://doi.org/10.1016/j.biocel.2006.07.001

    Article  CAS  PubMed  Google Scholar 

  39. Liu P, Wang, Tang J, Bowater RP, Bao Y (2019) Antioxidant effects of sulforaphane in human HepG2 cells and immortalised hepatocytes. Food Chem Toxicol 128:129–136. https://doi.org/10.1016/j.fct.2019.03.050

    Article  CAS  PubMed  Google Scholar 

  40. Tham NTT, Hwang SR, Bang JH, Yi H, Park YI, Kang SJ, Kang HG, Kim YS, Ku HO (2019) High-content analysis of in vitro hepatocyte injury induced by various hepatotoxicants. J Vet Sci 20(1):34–42. https://doi.org/10.4142/jvs.2019.20.1.34

    Article  PubMed  PubMed Central  Google Scholar 

  41. Korotkov SM, Brailovskaya IV, Kormilitsyn BN, Furaev VV (2014) Tl + showed negligible interaction with inner membrane sulfhydryl groups of rat liver mitochondria, but formed complexes with matrix proteins. J Biochem Mol Toxicol 28(4):149–156. https://doi.org/10.1002/jbt.21547

    Article  CAS  PubMed  Google Scholar 

  42. Ponsoda X, Jover R, Núñez C, Royo M, Castell JV, Gómez-Lechón MJ (1995) Evaluation of the cytotoxicity of 10 chemicals in human and rat hepatocytes and in cell lines: correlation between in vitro data and human lethal concentration. Toxicol in Vitro 9:959–966. https://doi.org/10.1016/0887-2333(95)00053-4

    Article  CAS  PubMed  Google Scholar 

  43. Donato MT, Tolosa L, Gómez-Lechón MJ (2015) Culture and functional characterization of human hepatoma HepG2 cells. Methods Mol Biol 1250:77–93. https://doi.org/10.1007/978-1-4939-2074-7_5

    Article  CAS  PubMed  Google Scholar 

  44. Pourahmad J, Eskandari MR, Daraei B (2010) A comparison of hepatocyte cytotoxic mechanisms for thallium (I) and thallium (III). Environ Toxicol 25(5):456–467. https://doi.org/10.1002/tox.20590

    Article  CAS  PubMed  ADS  Google Scholar 

  45. Kim JM, Kim HG, Son CG (2018) Tissue-specific profiling of oxidative stress-Associated Transcriptome in a healthy mouse model. Int J Mol Sci 19(10):3174. https://doi.org/10.3390/ijms19103174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Nandi A, Chatterjee IB (1988) Assay of superoxide dismutase activity in animal tissues. J Biosci 13:305–315. https://doi.org/10.1007/BF02712155

    Article  CAS  Google Scholar 

  47. Tian L, Cai Q, Wei H (1998) Alterations of antioxidant enzymes and oxidative damage to macromolecules in different organs of rats during aging. Free Radic Biol Med 24(9):1477–1484. https://doi.org/10.1016/s0891-5849(98)00025-2

    Article  CAS  PubMed  Google Scholar 

  48. Thimmulappa RK, Chattopadhyay I, Rajasekaran S (2020) Oxidative stress mechanisms in the Pathogenesis of Environmental Lung diseases. In: Chakraborti S, Parinandi N, Ghosh R, Ganguly N, Chakraborti T (eds) Oxidative stress in Lung diseases. Springer, Singapore. https://doi.org/10.1007/978-981-32-9366-3_5

    Chapter  Google Scholar 

  49. Factor P (2001) Role and regulation of lung na, K-ATPase. Cellular and Molecular Biology. France) 47(2):347–361(Noisy-le-GrandPMID: 11355011

    CAS  Google Scholar 

Download references

Acknowledgements

This study received financial support from the Institute for Medical Research and Occupational Health, Zagreb and University of Zagreb Faculty of Pharmacy and Biochemistry.

Funding

This study received financial support from the Institute for Medical Research and Occupational Health, Zagreb and University of Zagreb Faculty of Pharmacy and Biochemistry, Zagreb.

Author information

Authors and Affiliations

Authors

Contributions

AMMČ: Investigation, Writing-Original draft, Visualization; SM: Data Curation, Visualization; PC: Resources, Writing-Review & Editing; IP: Resources, Funding acquisition; DK: Formal analysis, Resources, Writing-Review & Editing; EB: Formal analysis, Resources; AMD: Conceptualization, Validation, Methodology, Resources, Supervision, Writing- Review & Editing, project administration, Funding acquisition.

Corresponding author

Correspondence to Ana Marija Marjanović Čermak.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marjanović Čermak, A.M., Mustać, S., Cvjetko, P. et al. Thallium Toxicity and its Interference with Potassium Pathways Tested on Various Cell Lines. Biol Trace Elem Res (2024). https://doi.org/10.1007/s12011-024-04086-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12011-024-04086-8

Keywords

Navigation