Skip to main content
Log in

Assessment of total and organic vanadium levels and their bioaccumulation in edible sea cucumbers: tissues distribution, inter-species-specific, locational differences and seasonal variations

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

The objective of this study is to investigate the levels, inter-species-specific, locational differences and seasonal variations of vanadium in sea cucumbers and to validate further several potential factors controlling the distribution of metals in sea cucumbers. Vanadium levels were evaluated in samples of edible sea cucumbers and were demonstrated exhibit differences in different seasons, species and sampling sites. High vanadium concentrations were measured in the sea cucumbers, and all of the vanadium detected was in an organic form. Mean vanadium concentrations were considerably higher in the blood (sea cucumber) than in the other studied tissues. The highest concentration of vanadium (2.56 μg g−1), as well as a higher degree of organic vanadium (85.5 %), was observed in the Holothuria scabra samples compared with all other samples. Vanadium levels in Apostichopus japonicus from Bohai Bay and Yellow Sea have marked seasonal variations. Average values of 1.09 μg g−1 of total vanadium and 0.79 μg g−1 of organic vanadium were obtained in various species of sea cucumbers. Significant positive correlations between vanadium in the seawater and V org in the sea cucumber (r = 81.67 %, p = 0.00), as well as between vanadium in the sediment and V org in the sea cucumber (r = 77.98 %, p = 0.00), were observed. Vanadium concentrations depend on the seasons (salinity, temperature), species, sampling sites and seawater environment (seawater, sediment). Given the adverse toxicological effects of inorganic vanadium and positive roles in controlling the development of diabetes in humans, a regular monitoring programme of vanadium content in edible sea cucumbers can be recommended.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Anan, Y., Kunito, T., Tanabe, S., Mitrofanov, I., & Aubrey, D. G. (2005). Trace element accumulation in fishes collected from coastal waters of the Caspian Sea. Marine Pollution Bulletin, 51(8–12), 882–888.

    Article  CAS  Google Scholar 

  • Barceloux, D. G., & Barceloux, D. (1999). Vanadium. Clinical Toxicology, 37(2), 265–278.

    CAS  Google Scholar 

  • Bellante, A., Sprovieri, M., Buscaino, G., Manta, D. S., Buffa, G., Di Stefano, V., et al. (2009). Trace elements and vanadium in tissues and organs of five species of cetaceans from Italian coasts. Chemistry and Ecology, 25(5), 311–323.

    Article  CAS  Google Scholar 

  • Brichard, S., Assimacopoulos-Jeannet, F., & Jeanrenaud, B. (1992). Vanadate treatment markedly increases glucose utilization in muscle of insulin-resistant fa/fa rats without modifying glucose transporter expression. Endocrinology, 131(1), 311–317.

    CAS  Google Scholar 

  • Burba, P., & Willmer, P. (1986). Trace determination of molybdenum and vanadium in natural waters by means of atomic spectroscopy (AAS, ICP-OES) after preconcentration. Fresenius’ Zeitschrift für analytische Chemie, 324(3–4), 298–299.

    Article  Google Scholar 

  • Chasteen, N. D. (1983). The biochemistry of vanadium. In M. J. Clarke (Ed.), Copper, molybdenum, and vanadium in biological systems (pp. 105–138). Berlin: Springer.

  • Chen, J. (2004). Present status and prospects of sea cucumber industry in China. In A. Lovatelli (Ed.), Advances in sea cucumber aquaculture and management (pp. 25–38). Rome: FAO Fisheries technical paper.

  • Clague, M. J., Keder, N. L., & Butler, A. (1993). Biomimics of vanadium bromoperoxidase: Vanadium (V)–Schiff base catalyzed oxidation of bromide by hydrogen peroxide. Inorganic Chemistry, 32(22), 4754–4761.

    Article  CAS  Google Scholar 

  • Clark, T. A., Deniset, J. F., Heyliger, C. E., & Pierce, G. N. (2014). Alternative therapies for diabetes and its cardiac complications: Role of vanadium. Heart Failure Reviews, 19(1), 123–132.

    Article  CAS  Google Scholar 

  • Dong, Y. W., Dong, S. L., & Meng, X. L. (2008). Effects of thermal and osmotic stress on growth, osmoregulation and Hsp70 in sea cucumber (Apostichopus japonicus Selenka). Aquaculture, 276(1–4), 179–186.

    Article  CAS  Google Scholar 

  • Dusek, L., Svobodová, Z., Janousková, D., Vykusová, B., Jarkovský, J., Šmíd, R., et al. (2005). Bioaccumulation of mercury in muscle tissue of fish in the Elbe River (Czech Republic): Multispecies monitoring study 1991–1996. Ecotoxicology and Environmental Safety, 61(2), 256–267.

    Article  CAS  Google Scholar 

  • Erdem, A., Shahwan, T., Çağır, A., & Eroğlu, A. E. (2011). Synthesis of aminopropyl triethoxysilane-functionalized silica and its application in speciation studies of vanadium (IV) and vanadium (V). Chemical Engineering Journal, 174(1), 76–85.

    Article  CAS  Google Scholar 

  • Evangelou, A. M. (2002). Vanadium in cancer treatment. Critical reviews in oncology/hematology, 42(3), 249–265.

    Article  Google Scholar 

  • Fattorini, D., Notti, A., Di Mento, R., Cicero, A. M., Gabellini, M., Russo, A., et al. (2008). Seasonal, spatial and inter-annual variations of trace metals in mussels from the Adriatic Sea: A regional gradient for arsenic and implications for monitoring the impact of off-shore activities. Chemosphere, 72(10), 1524–1533.

    Article  CAS  Google Scholar 

  • Fattorini, D., & Regoli, F. (2012). Hyper-accumulation of vanadium in polychaetes. In H. Michibata (Ed.), Vanaidum: Biochemical and molecular biological approaches (pp. 73–92). New York: Springer.

  • Ferreira, S. L. C., Queiroz, A. S., Fernandes, M. S., & dos Santos, H. C. (2002). Application of factorial designs and Doehlert matrix in optimization of experimental variables associated with the preconcentration and determination of vanadium and copper in seawater by inductively coupled plasma optical emission spectrometry. Spectrochimica Acta, Part B: Atomic Spectroscopy, 57(12), 1939–1950.

    Article  Google Scholar 

  • Filik, H., & Aksu, D. (2011). Determination of vanadium in food samples by cloud point extraction and graphite furnace atomic absorption spectroscopy. Food Analytical Methods, 5(3), 359–365.

    Article  Google Scholar 

  • Gil, J., Miralpeix, M., Carreras, J., & Bartrons, R. (1988). Insulin-like effects of vanadate on glucokinase activity and fructose 2, 6-bisphosphate levels in the liver of diabetic rats. Journal of Biological Chemistry, 263(4), 1868–1871.

    CAS  Google Scholar 

  • Henze, M. (1911). Untersuchungen über das Blut der Ascidien. I. Mitteilung. Die Vanadiumverbindung der Blutkörperchen. Hoppe-Seyler´ s Zeitschrift für physiologische Chemie, 72(5–6), 494–501.

    Article  CAS  Google Scholar 

  • Heyliger, C. E., Tahiliani, A. G., & McNeill, J. H. (1985). Effect of vanadate on elevated blood glucose and depressed cardiac performance of diabetic rats. Science, 227(4693), 1474–1477.

    Article  CAS  Google Scholar 

  • Hu, M., Li, Q., & Li, L. (2010). Effect of salinity and temperature on salinity tolerance of the sea cucumber Apostichopus japonicus. Fisheries Science, 76(2), 267–273.

    Article  CAS  Google Scholar 

  • Jennings, J. R., & Rainbow, P. S. (1979). Studies on the uptake of cadmium by the crab Carcinus maenas in the laboratory. I. Accumulation from seawater and a food source. Marine Biology, 50(2), 131–139.

    Article  CAS  Google Scholar 

  • Joiris, C. R., Moatemri, N. L., & Holsbeek, L. (1997). Mercury and polychlorinated biphenyls in zooplankton and shrimp from the Barents Sea and the Spitsbergen area. Bulletin of Environment Contamination and Toxicology, 59(3), 472–478.

    Article  CAS  Google Scholar 

  • Kanda, T., Nose, Y., Wuchiyama, J., Uyama, T., Moriyama, Y., & Michibata, H. (1997). Identification of a vanadium-associated protein from the vanadium-rich ascidian. Ascidia sydneiensis samea. Zoological science, 14(1), 37–42.

    Article  CAS  Google Scholar 

  • Kawakami, N., Ueki, T., Amata, Y., Kanamori, K., Matsuo, K., Gekko, K., et al. (2009). A novel vanadium reductase, Vanabin2, forms a possible cascade involved in electron transfer. Biochimica et Biophysica Acta, 1794(4), 674–679.

    Article  CAS  Google Scholar 

  • Kobayashi, M., & Olefsky, J. M. (1979). Effects of streptozotocin-induced diabetes on insulin binding, glucose transport, and intracellular glucose metabolism in isolated rat adipocytes. Diabetes, 28(2), 87–95.

    Article  CAS  Google Scholar 

  • Liu, X., Xue, C., Wang, Y., Li, Z., Xue, Y., & Xu, J. (2012). The classification of sea cucumber (Apostichopus japonicus) according to region of origin using multi-element analysis and pattern recognition techniques. Food Control, 23(2), 522–527.

    Article  CAS  Google Scholar 

  • Mason, R. P., Laporte, J., & Andres, S. (2000). Factors controlling the bioaccumulation of mercury, methylmercury, arsenic, selenium, and cadmium by freshwater invertebrates and fish. Archives of Environmental Contamination and Toxicology, 38(3), 283–297.

    Article  CAS  Google Scholar 

  • Michibata, H. (2011). Vanadium effects on bone metabolism. In H. Michibata (Ed.), Vanadium: Biochemical and molecular biological approaches (pp. 145–162). New York: Springer.

  • Michibata, H. (2012). Hyper-accumulation of vanadium in polychaetes. In H. Michibata (Ed.), Vanadium: Biochemical and molecular biological approaches (pp. 73–89). New York: Springer.

  • Michibata, H., Hirose, H., Sugiyama, K., Ookubo, Y., & Kanamori, K. (1990). Extraction of a vanadium-binding substance (vanadobin) from the blood cells of several ascidian species. The Biological Bulletin, 179(1), 140–147.

    Article  CAS  Google Scholar 

  • Michibata, H., Uyama, T., Ueki, T., & Kanamori, K. (2002). Vanadocytes, cells hold the key to resolving the highly selective accumulation and reduction of vanadium in ascidians. Microscopy Research and Technique, 56(6), 421–434.

    Article  CAS  Google Scholar 

  • Miramand, P., & Guary, J. C. (1980). High concentrations of some heavy metals in tissues of the Mediterranean octopus. Bulletin of Environment Contamination and Toxicology, 24(5), 783–788.

    Article  CAS  Google Scholar 

  • Moati, A., & MAR. (1997). Bio accumulation of chromium, nickel, lead and vanadium in some commercial fish and prawn from qatari waters. Qatar University Science Journal, 17(1), 195–203.

    Google Scholar 

  • Pekiner, O. Z., Naeemullah, & Tüzen, M. (2014). Preconcentration and speciation of vanadium by three phases liquid–liquid microextraction prior to electrothermal atomic absorption spectrometry. Journal of Industrial and Engineering Chemistry, 20(4), 1825–1829.

    Article  CAS  Google Scholar 

  • Pillai, S. I., Subramanian, S. P., & Kandaswamy, M. (2013). A novel insulin mimetic vanadium flavonol complex: Synthesis, characterization and in vivo evaluation in STZ-induced rats. European Journal of Medicinal Chemistry, 63, 109–117.

    Article  CAS  Google Scholar 

  • Ramachandran, B., Kandaswamy, M., Narayanan, V., & Subramanian, S. (2003). Insulin mimetic effects of macrocyclic binuclear oxovanadium complexes on streptozotocin-induced experimental diabetes in rats. Diabetes, Obesity and Metabolism, 5(6), 455–461.

    Article  CAS  Google Scholar 

  • Ramachandran, B., Ravi, K., Narayanan, V., Kandaswamy, M., & Subramanian, S. (2004a). Effect of macrocyclic binuclear oxovanadium complex on tissue defense system in streptozotocin-induced diabetic rats. Clinica Chimica Acta, 345(1), 141–150.

    Article  CAS  Google Scholar 

  • Ramachandran, B., Ravi, K., Narayanan, V., Kandaswamy, M., & Subramanian, S. (2004b). Protective effect of macrocyclic binuclear oxovanadium complex on oxidative stress in pancreas of streptozotocin induced diabetic rats. Chemico-Biological Interactions, 149(1), 9–21.

    Article  CAS  Google Scholar 

  • Ren, Y., Dong, S., Wang, F., Gao, Q., Tian, X., & Liu, F. (2010). Sedimentation and sediment characteristics in sea cucumber Apostichopus japonicus (Selenka) culture ponds. Aquaculture Research, 42(1), 14–21.

    Article  Google Scholar 

  • Sakurai, H., Sano, H., Takino, T., & Yasui, H. (2000). An orally active antidiabetic vanadyl complex, bis (1-oxy-2-pyridinethiolato) oxovanadium (IV), with VO (S2O2) coordination mode; in vitro and in vivo evaluations in rats. Journal of Inorganic Biochemistry, 80(1), 99–105.

    Article  CAS  Google Scholar 

  • Soares, S. S., Martins, H., Duarte, R. O., Moura, J. J. G., Coucelo, J., Gutiérrez-Merino, C., et al. (2007). Vanadium distribution, lipid peroxidation and oxidative stress markers upon decavanadate in vivo administration. Journal of Inorganic Biochemistry, 101(1), 80–88.

    Article  CAS  Google Scholar 

  • Srivastava, A., & Mehdi, M. (2005). Insulino-mimetic and anti-diabetic effects of vanadium compounds. Diabetic Medicine, 22(1), 2–13.

    Article  CAS  Google Scholar 

  • Takashi, H., Nobuhiro, Z., Kyoko, Y., Ryoko, N., Xue, C., & Tatsuya, S. (2005). Recent advances in researches on physiologically active substances in holothurians. Journal of Ocean University of China, 4(3), 193–197.

    Article  CAS  Google Scholar 

  • Ueki, T., Adachi, T., Kawano, S., Aoshima, M., Yamaguchi, N., Kanamori, K., et al. (2003). Vanadium-binding proteins (vanabins) from a vanadium-rich ascidian Ascidia sydneiensis samea. Biochimica et Biophysica Acta (BBA)—Gene Structure and Expression, 1626(1-3), 43–50.

    Article  CAS  Google Scholar 

  • Ueki, T., Kawakami, N., Toshishige, M., Matsuo, K., Gekko, K., & Michibata, H. (2009). Characterization of vanadium-binding sites of the vanadium-binding protein Vanabin2 by site-directed mutagenesis. Biochimica et Biophysica Acta, 1790(10), 1327–1333.

    Article  CAS  Google Scholar 

  • Ueki, T., Satake, M., Kamino, K., & Michibata, H. (2008). Sequence variation of Vanabin2-like vanadium-binding proteins in blood cells of the vanadium-accumulating ascidian Ascidia sydneiensis samea. Biochimica et Biophysica Acta, 1780(7–8), 1010–1015.

    Article  CAS  Google Scholar 

  • Ueki, T., Shintaku, K., Yonekawa, Y., Takatsu, N., Yamada, H., Hamada, T., et al. (2007). Identification of vanabin-interacting protein 1 (VIP1) from blood cells of the vanadium-rich ascidian Ascidia sydneiensis samea. Biochimica et Biophysica Acta, 1770(6), 951–957.

    Article  CAS  Google Scholar 

  • Wang, Y., Su, W., Zhang, C., Xue, C., Chang, Y., Wu, X., et al. (2012). Protective effect of sea cucumber (Acaudina molpadioides) fucoidan against ethanol-induced gastric damage. Food Chemistry, 133(4), 1414–1419.

    Article  CAS  Google Scholar 

  • Warnau, M., Dutrieux, S., Ledent, G., Rodriguez y Baena, A. M., & Dúbois, P. (2006). Heavy metals in the sea cucumber Holothuria tubulosa (Echinodermata) from the Mediterranean Posidonia oceanica ecosystem: Body compartment, seasonal geographical and bathymetric variations. Environmental Bioindicators, 1(4), 268–285.

    Article  CAS  Google Scholar 

  • Wen, J., & Hu, C. (2010). Elemental composition of commercial sea cucumbers (holothurians). Food Additives and Contaminants, 3(4), 246–252.

    Article  CAS  Google Scholar 

  • World health organization. (1984). Vanadium, environmental health criteria 81. In The International (Ed.), Programme on chemical safety (IPCS). Geneva: WHO.

    Google Scholar 

  • Yang, R., Zhang, S., & Wang, Z. (2014). Bioaccumulation and regional distribution of trace metals in fish of the Tibetan Plateau. Environmental Geochemistry and Health, 36(1), 183–191.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Natural Science Foundation of China (No. 31201329), the National Marine Public Welfare Scientific Research Project of China (No. 201105029) and the Programme for Changjiang Scholars and Innovative Research Team in University (IRT1188). We greatly appreciate suggestions from anonymous referees for the improvement of this article.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jie Xu or Changhu Xue.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Zhou, Q., Xu, J. et al. Assessment of total and organic vanadium levels and their bioaccumulation in edible sea cucumbers: tissues distribution, inter-species-specific, locational differences and seasonal variations. Environ Geochem Health 38, 111–122 (2016). https://doi.org/10.1007/s10653-015-9689-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-015-9689-9

Keywords

Navigation