Skip to main content
Log in

Downregulation of Apoptosis and Modulation of TGF-β1 by Sodium Selenate Prevents Streptozotocin-Induced Diabetic Rat Renal Impairment

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

To investigate whether sodium selenate treatment would impact on the onset of diabetic nephropathy, we examined blood glucose, serum biochemical components, and interrelationship between oxidative stress, TGF-β1, and apoptosis in streptozotocin (STZ) induced diabetic rats. Sixty male Wistar rats were divided into six groups. Group I (n = 10), normal control; Group II (n = 10), diabetic control; Group III (n = 10), sodium selenate (16 μmoles/kg) + diabetic; Group IV (n = 10), sodium selenate (32 μmoles/kg) + diabetic; Group V (n = 10), sodium selenate (16 μmoles/kg) control; and Group VI (n = 10), sodium selenate (32 μmoles/kg) control. Sodium selenate was administered via orogastric route for 10 weeks. In the diabetic group, diabetes was induced by single intraperitoneal injection of STZ (50 mg/kg). The levels of blood glucose were estimated and total cholesterol, high-density lipoprotein (HDL) cholesterol, triglycerides, creatinine, urea, and albumin were detected in serum. Antioxidant status was examined by measuring the superoxide dismutase (SOD), catalase, glutathione, and lipid peroxidation in kidney tissues. Histopathological studies were performed in the kidney tissue sections. The expression of TGF-β1 was estimated by the immunohistochemical analysis in kidneys. Apoptotic study in kidney was performed using the TdT-mediated dUTP nick end labeling technique. It was observed that blood glucose, serum, total cholesterol, HDL cholesterol, triglycerides, creatinine, urea, and albumin were significantly higher in diabetic control groups. Diabetic + sodium selenate (16 and 32 μmoles/kg) significantly reduced blood glucose, serum, total cholesterol, HDL cholesterol, triglycerides, creatinine, urea, and albumin levels. Selenium-treated groups significantly increased antioxidant enzyme activities (SOD, catalase, and glutathione) in kidneys of diabetic rats. All enzyme activities of selenium control groups did not differ compared with the normal control. Sodium selenate reduces significantly lipid peroxidation in diabetic rats. Cellular architecture of the diabetic rats was altered whereas sodium selenate administration rectifies the degenerative changes of the kidney. Profound immunopositivity of TGF-β1 was observed in the glomerular and tubulointerstitial cells of diabetic rat kidney. Immunopositivity of TGF-β1 was significantly reduced in both low and high dose of sodium-selenate-treated rats (P < 0.05, P < 0.01). High numbers of apoptotic cells were observed in diabetic rats whereas sodium selenate in both doses significantly reduces the incidence of apoptosis (P < 0.05, P < 0.01). We conclude herein that sodium selenate has the potential to play a significant role in limiting the renal impairment by altering the apoptosis and TGF-β1 in experimental diabetic rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. American Diabetes Association (2005) Diagnosis and classification of diabetes mellitus. Diabetes Care 28:37–42

    Article  Google Scholar 

  2. Wild S, Roglic G, Green A, Sicree R, King H (2004) Global prevalence of diabetes estimates for the year 2000 and projections for 2030. Diabetes Care 27:1047–1053

    Article  PubMed  Google Scholar 

  3. Pyorala K, Laakso M, Unsitupa M (1987) Diabetes and atherosclerosis a epidemiologic view. Diabetes Metab Rev 3(2):463–524

    Article  CAS  PubMed  Google Scholar 

  4. The Diabetes Control and Complications Trial Research Group (1993) The effect of intensive treatment of diabetes on the development and progression of long term complications in insulin dependent diabetes mellitus. N Engl J Med 329(14):977–986

    Article  Google Scholar 

  5. Brownlee M (2001) Biochemistry and molecular cell biology of diabetic complications. Nature 414:813–820

    Article  CAS  PubMed  Google Scholar 

  6. Sozmen EY, Sozmen B, Delen Y, Onat T (2001) Catalase/superoxide dismutase (SOD) and catalase/paroxonase (PON) ratios may implicate poor glycemic control. Arch Med Res 32:283–287

    Article  CAS  PubMed  Google Scholar 

  7. Davi G, Falco A, Patrono C (2005) Lipid peroxidation in diabetes mellitus. Antioxid Redox Signal 7:256–268

    Article  CAS  PubMed  Google Scholar 

  8. Godin DV, Wohaieb SA, Garnett ME, Goumeniouk AD (1988) Antioxidant enzyme alterations in experimental and clinical diabetes. Mol Cell Biochem 84:223–231

    Article  CAS  PubMed  Google Scholar 

  9. Rocco MV, Chen Y, Goldfard S, Ziyadeh FN (1992) Elevated glucose stimulates TGF- β gene expression and bioactivity in proximal tubule. Kidney Int 41:107–114

    Article  CAS  PubMed  Google Scholar 

  10. Kerr JF, Gobe GC, Winterford CM, Harmon BV (1995) Anatomical methods in cell death. Methods Cell Biol 46:1–27

    Article  CAS  PubMed  Google Scholar 

  11. Andrade L, Vieira JM, Safirstein R (2000) How cells die counts. Am J Kidney Dis 36:662–668

    Article  CAS  PubMed  Google Scholar 

  12. Nagata S (1997) Apoptosis by death factor. Cell 88:355–365

    Article  CAS  PubMed  Google Scholar 

  13. Pennington JA, Young BE (1991) Total diet study nutritional elements. J Am Diet Assoc 91:179–183

    CAS  PubMed  Google Scholar 

  14. Shiobara Y, Yoshida T, Suzuki KT (1998) Effect of dietary selenium species on selenium concentrations in hair, blood and urine. Toxicol Appl Pharmacol 152:309–314

    Article  CAS  PubMed  Google Scholar 

  15. Letavayova L, Vlckova V, Brozmanova J (2006) Selenium, from cancer prevention to DNA damage. Toxicology 227:1–14

    Article  CAS  PubMed  Google Scholar 

  16. McNeill JH, Delgatty HL, Battell ML (1991) Insulin like effects of sodium selenate in streptozotocin induced diabetic rats. Diabetes 40:1675–1678

    Article  CAS  PubMed  Google Scholar 

  17. Battell ML, Delgatty HL, McNeill JH (1998) Sodium selenate corrects glucose tolerance and heart function in STZ diabetic rats. Mol Cell Biochem 179:27–34

    Article  CAS  PubMed  Google Scholar 

  18. Xia L, Nordman T, Olsson JM, Damdimopoulos A, Bjorkhem-Bergman L, Nalvarte T, Eriksson LL, Arner ESJ, Spyrou G, Bjornstedt M (2002) The mammalian selenoenzyme thioredoxin reductase reduces ubiquinone. A novel mechanism for defense against oxidative stress. J Biol Chem 278:2141–2146

    Article  PubMed  Google Scholar 

  19. Ezaki O (1990) The insulin-like effects of selenate in rat adipocytes. J Biol Chem 265:1124–1130

    CAS  PubMed  Google Scholar 

  20. Becker DJ, Reul B, Ozcelikay AT, Buchet JP, Henquin JC, Brichard SM (1996) Oral selenate improves glucose homeostasis and partly reverses abnormal expression of liver glycogenic and gluconeogenic enzymes in diabetic rats. Diabetologia 39:3–11

    Article  CAS  PubMed  Google Scholar 

  21. Mueller AS, Pallauf J, Rafael J (2003) The chemical form of selenium affects insulinomimetic properties of the trace element investigaiton in type II diabetic dbdb mice. J Nutr Biochem 14:637–647

    Article  CAS  PubMed  Google Scholar 

  22. Szkudelski T (2001) The mechanism of alloxan and streptozotocin in action in beta cells of rat pancreas. Physiol Res 50:536–546

    Google Scholar 

  23. Mythili MD, Vyas R, Akila G, Gunasekaran S (2004) Effect of streptozotocin on the ultra structure of rat pancreatic islets. Microsc Res Tech 63:274–281

    Article  CAS  PubMed  Google Scholar 

  24. Kedziora K, Szram S, Komotowski T, Szadujkis-Szaduriki L, Bartosz G (2002) The effect of verapamil on the antioxidant defense system in diabetic kidney. Clin Chim Acta 322:105–112

    Article  PubMed  Google Scholar 

  25. Buege JA, Aust SD (1984) Microsomal lipid peroxidation. Meth Enzymol 105:302–310

    Google Scholar 

  26. Reddi AS, Bollineni JS (1997) Renal cortical expression of mRNAs for antioxidant enzymes in normal and diabetic rats. Biochem Biophys Res Commun 235:598–601

    Article  CAS  PubMed  Google Scholar 

  27. Pagila DE, Valentine WN (1967) Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med 70:158–169

    Google Scholar 

  28. Johansson LH, Hakan Borg LA (1988) A spectrophotometric method for determination of catalase activity in small tissue samples. Anal Biochem 174:331–336

    Article  CAS  PubMed  Google Scholar 

  29. Jin R, Chow VT, Tan PH, Dheen ST, Duan W, Bay BH (2002) Metallothionein 2A expression is associated with cell proliferation in breast cancer. Carcinogenesis 23:81–86

    Article  CAS  PubMed  Google Scholar 

  30. Baynes JW, Thorpe SR (1996) The role of oxidative stress in diabetic complications. Curr Opin Endocrinol 3:277–284

    Article  Google Scholar 

  31. Gupta S, Kataria M, Gupta PK, Murganandam RC, Yashroy RC (2004) Protective role of extracts of neem seeds in diabetes caused by Streptozotocin in rats. J Ethnopharmacol 90:185–189

    Article  CAS  PubMed  Google Scholar 

  32. Baynes JW, Thorpe SR (1999) Role of oxidative stress in diabetic complications. A new perspective on an old paradigm. Diabetes 48:1–9

    Article  CAS  PubMed  Google Scholar 

  33. Ravi K, Ramachandran B, Subramanian S (2004) Protective effect of Eugenia jambolana seed kernel on tissue antioxidants in STZ induced diabetic rats. Biol Pharm Bull 27:1212–1217

    Article  CAS  PubMed  Google Scholar 

  34. Stapleton SR (2005) Selenium: an insulin mimetic. Cell Mol Life Sci 57:1874–1879

    Article  Google Scholar 

  35. Al-Shamaony L, Al-Khazaraji SM, Twaiji IA (1994) Hypoglycemic effect of Arteminia herba alba II effect of a valuable extract on some blood parameters in diabetic animals. J Ethnopharmacol 43:167–171

    Article  CAS  PubMed  Google Scholar 

  36. Naziroglu M, Dilsiz N, Cay M (1999) Protective role of intraperitoneally administered vitamin C and E and Selenium on the levels of lipid peroxidation in the lens of rats made diabetic with streptozotocin. Biol Trace Elem Res 70:223–232

    Article  CAS  PubMed  Google Scholar 

  37. Bayraktitan U (2002) Free radical, diabetes and endothelial function. Diabetes Obes Metab 4:224–238

    Article  Google Scholar 

  38. Almdal TP, Vilstrup H (1988) Strict insulin treatment normalizes the organic nitrogen contents and the capacity of urea-N synthesis in experimental diabetes in rats. Diabetologica 31:114–118

    Article  CAS  Google Scholar 

  39. Giugliano D, Ceriello A (1996) Oxidative stress and diabetic vascular complications. Diabetes Care 19:257–267

    Article  CAS  PubMed  Google Scholar 

  40. Kakkar R, Kalra J, Mantha SV, Prasad K (1995) Lipid peroxidation and activity of antioxidant enzymes in diabetic rats. Mol Cell Biochem 151:113–119

    Article  CAS  PubMed  Google Scholar 

  41. Venkateswaran S, Pari L (2002) Antioxidant effect of Phaseolus vulgaris in streptozotocin induced diabetic rats. Asia Pacific J Clin Nutr 11:206–209

    Article  Google Scholar 

  42. Naziroglu M, Cay M (2001) Protective role of intraperitoneally administered vitamin E and selenium on the antioxidative defense mechanisms in rats with diabetes induced by streptozotocin. Biol Trace Elem Res 79:149–159

    Article  CAS  PubMed  Google Scholar 

  43. Sharma KP, Mc Cue SR, Dunn (2003) Diabetic kidney disease in the db/db mouse. Am J Physiol 28:F1138–F1144

    Google Scholar 

  44. Parinandi NL, Thompson EW, Schmid HHO (1990) Diabetic heart and kidney exhibit increased resistance to lipid peroxidation. Biochim Biophys Acta 1047:63–69

    CAS  PubMed  Google Scholar 

  45. Reddi AS, Camerini, Davalos RA (1990) Diabetes nephropathy an update. Arch Intern Med 150:31–43

    Article  CAS  PubMed  Google Scholar 

  46. Nishio E, Watanabe Y (1997) Transforming growth factor β is a modulator of platelet derived growth factor action in vascular smooth muscle cells: a possible role for catalase activity and glutathione peroxidase activity. Biochem Biophys Res Commun 232:1–4

    Article  CAS  PubMed  Google Scholar 

  47. Sharma K, Jin Y, Guo J, Ziyadeh FN (1996) Neutralization of TGF beta by anti TGF beta antibody attenuates kidney hypertrophy and the enhanced extracellular matrix gene expression in STZ induced diabetic mice. Diabetes 45:522–530

    Article  CAS  PubMed  Google Scholar 

  48. Schelling JR, Cleveland RP (1999) Involvement of Fas-dependent apoptosis in renal tubular epithelial cell deletion in chronic renal failure. Kidney Int 56:1313–1316

    Article  CAS  PubMed  Google Scholar 

  49. Sugiyama H, Kashihara N, Makino H, Yamasaki Y, Ota A (1996) Apoptosis in glomerular sclerosis. Kidney Int 49:103–111

    Article  CAS  PubMed  Google Scholar 

  50. Daemen MA, Van t Veer C, Denecker G, Heemskerk VH, Wolfs TG, Clauss M, Vandenabeele P, Buurman WA (1999) Inhibition of apoptosis induced by ischaemia reperfusion prevents inflammation. J Clin Invest 104:541–549

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Souvik Roy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roy, S., Dontamalla, S.K., Mondru, A.K. et al. Downregulation of Apoptosis and Modulation of TGF-β1 by Sodium Selenate Prevents Streptozotocin-Induced Diabetic Rat Renal Impairment. Biol Trace Elem Res 139, 55–71 (2011). https://doi.org/10.1007/s12011-010-8635-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-010-8635-z

Keywords

Navigation