Skip to main content
Log in

Urinary Scandium as Predictor of Exposure: Effects of Scandium Chloride Hexahydrate on Renal Function in Rats

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Some of the rare earth elements such as Sc are believed to be non-toxic and, at present, are widely utilized for the replacement of toxic heavy metals in technological applications, but they are not entirely free of toxicity, with hidden potential health risks. In this animal experiment, we report the urinary scandium (Sc) excretion rate and nephrotoxiciy in male Wistar rats. For this purpose, the rats were given a single dose of a solution of scandium chloride by intraperitoneal injection. The Sc excretion (U-Sc) was determined in 24-h urine samples by inductively coupled plasma–argon emission spectrometry along with the Sc nephrotoxicity, urine volume (UV), creatinine (Crt), β-2-microglobulin (β2-MG) and N-acetyl-β-d-glucosaminidase (NAG). A dose-dependent Sc excretion of 0.0063% (r = 0.97) via 24-h urine was confirmed. The administration of Sc induced a significant decrease of UV and Crt and a significant increase of NAG and β2-MG. These results suggest that U-Sc can be a useful tool for monitoring Sc exposure. The formation of Sc colloidal conjugates that deposit in glomeruli may be the cause of a reduction of the glomerular filtration rate. We propose that the analytical method and results described in this study will be of great importance for future toxicological studies on Sc exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. V.S. Sastri, J.C. Bünzli, J.R. Perumareddi, V. Ramachandra Rao, G.V.S. Rayudu, Modern Aspects of Rare Earths and their Complexes, Elsevier Science, Amsterdam (2003).

    Google Scholar 

  2. A.M. Gillespie Jr., Manual of Spectrofluorometric and Spectrophotometric Derivative Experiments; Spi edition, CRC, Boca Raton, FL (1993).

    Google Scholar 

  3. K. Bernot, L. Bogani, A. Caneschi, D. Gatteschi, R. Sessoli A family of rare-earth-based single chain magnets: playing with anisotropy. J Am Chem Soc. 128, 7947–56 (2006).

    Article  PubMed  CAS  Google Scholar 

  4. J. Qiu and A. Makishima Rare-earth containing nanocrystal precipitation and up-conversion luminescence in oxyfluoride glasses. J Nanosci Nanotechnol. 5, 1541–5 (2005).

    Article  PubMed  CAS  Google Scholar 

  5. Research Studies-Business Communications, Inc., Global Rare Earth market forecast to reach nearly $2 billion by 2007, Business Communications Company, Wellesley, MA (2003).

    Google Scholar 

  6. L. S. Toropova, D. G. Eskin, M. L. Kharakterova, T. V. Dobatkina Advanced Aluminum Alloys Containing Scandium: Structure and Properties, Taylor & Francis, London (1998).

    Google Scholar 

  7. W. H. Wells Jr, and V. L. Wells, The Lanthanides, Rare Earth Metals, in Patty’s Toxicology, Vol 3, by E. Bingham, B. Cohrssen, C. H. Powell, ed., Wiley-Interscience, 5th edition, Hoboken, NJ, pp432–433 (2000).

  8. K. Hutton, Chemistry (Trends in Science), Routledge, Oxford (2001).

    Google Scholar 

  9. M. Tamada Recovery of rare metals from hot-spring water (in Japanese) Isotope News 630, 2–3 (2006).

    Google Scholar 

  10. M. Tamada Collection of significant metals with graft adsorbent; Necessary security of nonproduced significant metals in Japan Denki Hyoron 93, 54–58 (2008).

    Google Scholar 

  11. S. D. Barrett and S. S. Dhesi, The Structure of Rare-Earth Metal Surfaces, Imperial College Press, London (2001).

    Google Scholar 

  12. W. Zhu, S. Xu, P. Shao, H. Zhang, D. Wu, W. Yang, J. Feng, L. Feng, Investigation on liver function among population in high background of rare earth area in South China. Biol Trace Elem Res. 104, 1–8, (2005).

    Article  PubMed  CAS  Google Scholar 

  13. H. Zhang, J. Feng, W. Zhu, C. Liu, D. Wu, W. Yang, J. Gu, Rare-earth element distribution characteristics of biological chains in rare-earth element-high background regions and their implications. Biol Trace Elem Res. 73, 19–27, (2000).

    Article  PubMed  CAS  Google Scholar 

  14. H. Zhang, J. Feng, W. Zhu, C. Liu, S. Xu, P. Shao, D. Wu, W. Yang, J. Gu, Chronic toxicity of rare-earth elements on human beings: implications of blood biochemical indices in REE-high regions, South Jiangxi. Biol Trace Elem Res. 73, 1–17, (2000).

    Article  PubMed  CAS  Google Scholar 

  15. W. Zhu, S. Xu, P. Shao, H. Zhang, D. Wu, W. Yang, J. Feng, Bioelectrical activity of the central nervous system among populations in a rare earth element area. Biol Trace Elem Res. 57, 71–77, (1997).

    Article  PubMed  CAS  Google Scholar 

  16. W. Zhu, S. Xu, D. Wu, P. Shao, W. Yang, H. Zhang, J. Feng, Investigation on arteriosclerosis among population in a rare earth area in south China. Biol Trace Elem Res. 59, 93–98, (1997).

    Article  PubMed  CAS  Google Scholar 

  17. T.J. Haley, N. Komasu, L. Navis, J. Cawthorne, H.C. Upham, The Pharmacology and Toxicology of Scandium Chloride. Technical Report, California. Univ., Los Angeles. School of Medicine. Lab. of Nuclear Medicine and Radiation Biology, CA, USA (1962).

  18. E. H. Borai, M. A. Eid, H.F. Aly, Determination of REEs distribution in monazite and xenotime minerals by ion chromatography and ICP-AES. Anal Bioanal Chem. 372, 537–541, (2002). 372(4):537–41.

    Article  PubMed  CAS  Google Scholar 

  19. Q. Bian, S. Peng, B. He, Z. Zhong, Direct determination of rare earth elements in rare earth chloride and light rare earth oxide by ICP-AES. Guang Pu Xue Yu Guang Pu Fen Xi. 20, 357–360 (2000).

    PubMed  CAS  Google Scholar 

  20. M. Chiba, A. Shinohara, M. Saiki, Y. Inaba, Comparative study of methods for determining lanthanide elements in biological materials by using NAA, HPLC postcolumn reaction, and ICP-MS. Biol Trace Elem Res. 43–45, 561–569 (1994).

    Article  PubMed  Google Scholar 

  21. P. R. Silva, J. G. Dorea, G. R. Boaventura, Multielement determination in small samples of human milk by inductively coupled plasma atomic emission spectrometry. Biol Trace Elem Res. 59, 57–62 (1997).

    Article  PubMed  CAS  Google Scholar 

  22. E. Sabbioni, G. R. Nicolaou, R. Pietra, E. Beccaloni, E. Coni, A. Alimonti, S. Caroli, Inductively coupled atomic emission spectrometry and neutron activation analysis for the determination of element reference values in human lung tissue. Biol Trace Elem Res. 26–27, 757–768 (1990).

    Article  PubMed  Google Scholar 

  23. E. H. Borai, M. A. Eid, H. F. Aly, Determination of REEs distribution in monazite and xenotime minerals by ion chromatography and ICP-AES. Anal Bioanal Chem. 372, 537–541 (2002).

    Article  PubMed  CAS  Google Scholar 

  24. K. Usuda, K. Kono, Y. Orita, T. Dote, K. Iguchi, H. Nishiura, M. Tominaga, T. Tagawa, E. Goto, Y. Shirai. Serum and urinary boron levels in rats after single administration of sodium tetraborate. Arch Toxicol. 72, 468–74 (1998).

    Article  PubMed  CAS  Google Scholar 

  25. A. Arancibia, F. Corvalan, F. Mella, L. Concha. Absorption and disposition kinetics of lithium carbonate following administration of conventional and controlled release formulations. Int J Clin Pharmacol Ther Toxicol. 24, 240–5 (1986).

    PubMed  CAS  Google Scholar 

  26. J. M. Warren and H. Spencer. Metabolic balances of strontium in man. Clin Orthop Relat Res. 117, 307–20 (1976).

    PubMed  Google Scholar 

  27. T. Dote, K. Kono, Y. Tanimura, H. Nagaie, Y. Yoshida Serum and urine fluoride level after fluoride administration in rats with experimental renal dysfunction. Trace Elem. Med. 10, 112–114 (1993).

    CAS  Google Scholar 

  28. S. Hayashi, K. Usuda, G. Mitsui, T. Shibutani, E. Dote, K. Adachi, M. Fujihara, Y. Shimbo, W. Sun, R. Kono, H. Tsuji, K. Kono. Urinary yttrium excretion and effects of yttrium chloride on renal function in rats. Biol Trace Elem Res. 114, 225–35 (2006).

    Article  PubMed  CAS  Google Scholar 

  29. A. N. Øksendal. Biodistribution and toxicity of MR imaging contrast media. J Magn Reson Imaging 3, 157–165 (1993).

    Article  PubMed  Google Scholar 

  30. P.M. Waring and R.J. Watling. Rare earth deposits in a deceased movie projectionist. A new case of rare earth pneumoconiosis? Med J Aust. 153, 726–30 (1990).

    PubMed  CAS  Google Scholar 

  31. S. Hirano, N. Kodama, K. Shibata, K.T. Suzuki. Metabolism and toxicity of intravenously injected yttrium chloride in rats. Toxicol Appl Pharmacol. 121, 224–32 (1993).

    Article  PubMed  CAS  Google Scholar 

  32. L.R.Willis, P.W.McCallum, J.T.Higgins Jr. Exaggerated natriuresis in the conscious spontaneously hypertensive rat. J Lab Clin Med. 87, 265–72 (1976).

    PubMed  CAS  Google Scholar 

  33. Z. Liu, Z. Lei, X. Wei, B. Xue. The effects of exposure to rare earth (NO3)3 on the immune function of mice off spring via milk. Zhonghua Yu Fang Yi Xue Za Zhi. 36, 394–7 (2002).

    Google Scholar 

  34. N. Sotogaku, K. Endo, R. Hirunuma, S. Enomoto, S. Ambe, F. Ambe. Binding properties of various metals to blood components and serum proteins: a multitracer study. J Trace Elem Med Biol. 13, 1–6 (1999).

    PubMed  CAS  Google Scholar 

  35. E. Sabbioni, R. Pietra, P. Gaglione, G. Vocaturo, F. Colombo, M. Zanoni, F. Rodi. Long-term occupational risk of rare-earth pneumoconiosis. A case report as investigated by neutron activation analysis. Sci Total Environ. 26, 19–32 (1982).

    Article  PubMed  CAS  Google Scholar 

  36. G. Vocaturo, F. Colombo, M. Zanoni, F. Rodi, E. Sabbioni, R. Pietra. Human exposure to heavy metals. Rare earth pneumoconiosis in occupational workers. Chest. 83, 780–3 (1983).

    Article  PubMed  CAS  Google Scholar 

  37. S. Porru, D. Placidi, C. Quarta, E. Sabbioni, R. Pietra, S. Fortaner. The potencial role of rare earths in the pathogenesis of interstitial lung disease: a case report of movie projectionist as investigated by neutron activation analysis. J Trace Elem Med Biol. 14, 232–6 (2001).

    Article  PubMed  CAS  Google Scholar 

  38. X.A. Chen, Y.E.Cheng, Z. Rong. Recent results from a study of thorium lung burdens and health effects among miners in China. J Radiol Prot. 25, 451–60 (2005).

    Article  PubMed  CAS  Google Scholar 

  39. C.J.McClain, M. McClain, S. Barve, M.G.Boosalis. Trace metals and the elderly. Clin Geriatr Med.18, 801–18 (2002)

    Article  PubMed  Google Scholar 

  40. M.E.Gershwin and L. Hurley. Trace metals and immune function in the elderly. Compr Ther.13, 18–23 (1987).

    PubMed  CAS  Google Scholar 

  41. K. Usuda, K. Kono, K. Iguchi, K. Nishiura, K. Miyata, M. Shimahara, T. Konda, N. Hashiguchi, J. Senda. Hemodialysis effect on serum boron level in the patients with long term hemodialysis. Sci Total Environ. 191, 283–90 (1996).

    Article  PubMed  CAS  Google Scholar 

  42. K. Usuda, K. Kono, T. Watanabe, T. Dote, H. Shimizu, M. Tominaga, C. Koizumi, H. Nishiura, E. Goto, H. Nakaya, M. Arisue, A. Fukutomi. Hemodialyzability of ionizable fluoride in hemodialysis session. Sci Total Environ. 297, 183–91 (2002).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kan Usuda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tanida, E., Usuda, K., Kono, K. et al. Urinary Scandium as Predictor of Exposure: Effects of Scandium Chloride Hexahydrate on Renal Function in Rats. Biol Trace Elem Res 130, 273–282 (2009). https://doi.org/10.1007/s12011-009-8337-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-009-8337-6

Keywords

Navigation