Skip to main content

Advertisement

Log in

An Insight on Synergistic Anti-cancer Efficacy of Biochanin A and Sulforaphane Combination Against Breast Cancer

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Breast cancer is a serious malignancy that has higher rate of morbidity and mortality. It has been known to affect the women indifferently. The lack and side effects in the current therapeutic modules result in the search of the wide treatment options including combinatorial treatment. The goal of this study was to investigate combinatorial anti-proliferative efficacy of biochanin A (BCA) and sulforaphane (SFN) against MCF-7 breast cancer cells. The study involves the utilisation of various qualitative techniques including cytotoxicity analysis (MTT), morphogenic analysis, AO/EtBr, DAPI, ROS, cell cycle, and cell migration analysis in order to examine the combinatorial efficacy of BCA and SFN in inducing the cell death. The results had shown that the cytotoxicity of BCA and SFN was found to be around 24.5 µM and 27.2 µM respectively, while the combination of BCA and SFN had shown an inhibitory activity at about 20.1 µM. And furthermore, AO/EtBr and DAPI had shown a profound increase in apoptogenic activity of compounds when treated in combination at lower dose. This apoptogenic activity may be attributed to the increased ROS production. Moreover, it has been shown that the BCA and SFN have been involved in the down-regulation of ERK-1/2 signalling pathway resulting in induction of apoptosis of cancer cells. Thus, our results had concluded that BCA and SFN co-treatment could be used as an efficient therapeutic target against breast cancer. Furthermore, in vivo efficiency by which the co-treatment induces apoptosis has to be deliberated further in near future to make their use commercially.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Not applicable

References

  1. Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2021). Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 71(3), 209–249. https://doi.org/10.3322/caac.21660

    Article  PubMed  Google Scholar 

  2. Nelson, H. D., Zakher, B., Cantor, A., Fu, R., Griffin, J., O’Meara, E. S., & Miglioretti, D. L. (2012). Risk factors for breast cancer for women aged 40 to 49 years: A systematic review and meta-analysis a systematic review and meta-analysis. Annals of Internal Medicine, 156(9), 635–648. https://doi.org/10.7326/0003-4819-156-9-201205010-00006

    Article  PubMed  PubMed Central  Google Scholar 

  3. Winters, S., Martin, C., Murphy, D., & Shokar, N. K. (2017). Breast cancer epidemiology, prevention, and screening. Progress in Molecular Biology and Translational Science, 151, 1–32. https://doi.org/10.1016/bs.pmbts.2017.07.002

  4. Zhou, Q. M., Chen, Q. L., Du, J., Wang, X. F., Lu, Y. Y., Zhang, H., & Su, S. B. (2014). Synergistic effect of combinatorial treatment with curcumin and mitomycin C on the induction of apoptosis of breast cancer cells: A cDNA microarray analysis. International Journal of Molecular Sciences, 15(9), 16284–16301. https://doi.org/10.3390/ijms150916284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Braicu, C., Buse, M., Busuioc, C., Drula, R., Gulei, D., Raduly, L., … Berindan-Neagoe, I. (2019, October 1). A comprehensive review on MAPK: A promising therapeutic target in cancer. Cancers. Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/cancers11101618

  6. Khotskaya, Y. B., Holla, V. R., Farago, A. F., Shaw, M., Meric-Bernstam, K. R., F., & Hong, D. S. (2017, May 1). Targeting TRK family proteins in cancer. Pharmacology and Therapeutics. https://doi.org/10.1016/j.pharmthera.2017.02.006

  7. Shah, S., Brock, E. J., Ji, K., & Mattingly, R. R. (2019, February 1). Ras and Rap1: A tale of two GTPases. Seminars in Cancer Biologyhttps://doi.org/10.1016/j.semcancer.2018.03.005

  8. Beevi, S. S., Mangamoori, L. N., Subathra, M., & Edula, J. R. (2010). Hexane extract of Raphanus sativus L. roots inhibits cell proliferation and induces apoptosis in human cancer cells by modulating genes related to apoptotic pathway. Plant Foods for Human Nutrition, 65(3), 200–209. https://doi.org/10.1007/s11130-010-0178-0

    Article  PubMed  Google Scholar 

  9. Tian, G., Li, Y., Cheng, L., Yuan, Q., Tang, P., Kuang, P., & Hu, J. (2016). The mechanism of sulforaphene degradation to different water contents. Food Chemistry, 194, 1022–1027. https://doi.org/10.1016/j.foodchem.2015.08.107

    Article  CAS  PubMed  Google Scholar 

  10. Geng, Y., Zhou, Y., Wu, S., Hu, Y., Lin, K., Wang, Y., … Wu, W. (2017). Sulforaphane induced apoptosis via promotion of mitochondrial fusion and ERK1/2-mediated 26s proteasome degradation of novel pro-survival bim and upregulation of bax in human non-small cell lung cancer cells. Journal of Cancer, 8(13), 2456–2470. https://doi.org/10.7150/jca.19383

  11. Liu, P., Atkinson, S. J., Akbareian, S. E., Zhou, Z., Munsterberg, A., Robinson, S. D., & Bao, Y. (2017). Sulforaphane exerts anti-angiogenesis effects against hepatocellular carcinoma through inhibition of STAT3/HIF-1α/VEGF signalling. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-12855-w

  12. Li, Y., Yu, H., Han, F., Wang, M., Luo, Y., & Guo, X. (2018). Biochanin A induces S phase arrest and apoptosis in lung cancer cells. BioMed Research International, 2018. https://doi.org/10.1155/2018/3545376

  13. Wu, Q., Wang, M., & Simon, J. E. (2003). Determination of isoflavones in red clover and related species by high-performance liquid chromatography combined with ultraviolet and mass spectrometric detection. Journal of Chromatography A, 1016(2), 195–209. https://doi.org/10.1016/j.chroma.2003.08.001

    Article  CAS  PubMed  Google Scholar 

  14. Saranya, T., Kavithaa, K., Paulpandi, M., Ramya, S., Preethi, S., Balachandar, V., & Narayanasamy, A. (2020). Enhanced apoptogenesis and oncogene regulatory mechanism of troxerutin in triple negative breast cancer cells. Toxicology Research, 9(3), 230–238. https://doi.org/10.1093/TOXRES/TFAA029

    Article  PubMed  PubMed Central  Google Scholar 

  15. Ramya, S., Paulpandi, M., Kavithaa, K., Saranya, T., Winster, H., Balachandar, V., & Narayanasamy, A. (2021). Fabatin-loaded silica nanoparticle-induced apoptosisviamitochondrial dysfunction: Targeting the PI3K/AKT molecular pathway as a therapeutic implication against triple negative breast cancer. New Journal of Chemistry, 45(38), 17847–17861. https://doi.org/10.1039/d1nj02922c

    Article  CAS  Google Scholar 

  16. Kavithaa, K., Paulpandi, M., Ramya, S., Ramesh, M., Balachandar, V., Ramasamy, K., & Narayanasamy, A. (2021). Sitosterol-fabricated chitosan nanocomplex induces apoptotic cell death through mitochondrial dysfunction in lung cancer animal model: An enhanced synergetic drug delivery system for lung cancer therapy. New Journal of Chemistry, 45(20), 9251–9263. https://doi.org/10.1039/d1nj00913c

    Article  CAS  Google Scholar 

  17. Sun, Y. S., Zhao, Z., Yang, Z. N., Xu, F., Lu, H. J., Zhu, Z. Y., … Zhu, H. P. (2017). Risk factors and preventions of breast cancer.International Journal of Biological Sciences. Ivyspring International Publisher. https://doi.org/10.7150/ijbs.21635

  18. Pawlik, A., Wiczk, A., Kaczyńska, A., Antosiewicz, J., & Herman-Antosiewicz, A. (2013). Sulforaphane inhibits growth of phenotypically different breast cancer cells. European Journal of Nutrition, 52(8), 1949–1958. https://doi.org/10.1007/s00394-013-0499-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kerr, C., Adhikary, G., Grun, D., George, N., & Eckert, R. L. (2018). Combination cisplatin and sulforaphane treatment reduces proliferation, invasion, and tumor formation in epidermal squamous cell carcinoma. Molecular Carcinogenesis, 57(1), 3–11. https://doi.org/10.1002/mc.22714

    Article  CAS  PubMed  Google Scholar 

  20. Mi, L., Hood, B. L., Stewart, N. A., Xiao, Z., Govind, S., Wang, X., … Chung, F. L. (2011). Identification of potential protein targets of isothiocyanates by proteomics. Chemical Research in Toxicology, 24(10), 1735–1743. https://doi.org/10.1021/tx2002806

  21. Moon, Y. J., Shin, B. S., An, G., & Morris, M. E. (2008). Biochanin A inhibits breast cancer tumor growth in a murine xenograft model. Pharmaceutical Research, 25(9), 2158–2163. https://doi.org/10.1007/s11095-008-9583-6

    Article  CAS  PubMed  Google Scholar 

  22. Sharma, M., & Tollefsbol, T. O. (2022). Combinatorial epigenetic mechanisms of sulforaphane, genistein and sodium butyrate in breast cancer inhibition. Experimental Cell Research, 416(1), 113160. https://doi.org/10.1016/j.yexcr.2022.113160

    Article  CAS  PubMed  Google Scholar 

  23. Ren, G., Shi, Z., Teng, C., & Yao, Y. (2018). Antiproliferative activity of combined biochanin A and ginsenoside Rh2 on MDA-MB-231 and MCF-7 human breast cancer cells. Molecules, 23(11). https://doi.org/10.3390/molecules23112908

  24. Harris, I. S., & DeNicola, G. M. (2020, June 1). The complex interplay between antioxidants and ROS in cancer. Trends in Cell Biology. https://doi.org/10.1016/j.tcb.2020.03.002

  25. Liu, F., Lv, R. Bin, Liu, Y., Hao, Q., Liu, S. J., Zheng, Y. Y., … Wang, M. (2020). Salinomycin and sulforaphane exerted synergistic antiproliferative and proapoptotic effects on colorectal cancer cells by inhibiting the pi3k/ akt signaling pathway in vitro and in vivo. OncoTargets and Therapy, 13, 4957–4969. https://doi.org/10.2147/OTT.S246706

  26. Guo, Y., Pan, W., Liu, S., Shen, Z., Xu, Y., & Hu, L. (2020). ERK/MAPK signalling pathway and tumorigenesis (review). Experimental and Therapeutic Medicine, 19(3), 1997–2007. https://doi.org/10.3892/etm.2020.8454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Meloche, S., & Pouysségur, J. (2007, May 14). The ERK1/2 mitogen-activated protein kinase pathway as a master regulator of the G1- to S-phase transition. Oncogenehttps://doi.org/10.1038/sj.onc.1210414

  28. Zhang, Y., Lu, Q., Li, N., Xu, M., Miyamoto, T., & Liu, J. (2022). Sulforaphane suppresses metastasis of triple-negative breast cancer cells by targeting the RAF/MEK/ERK pathway. NPJ Breast Cancer, 8(1), 1–14. https://doi.org/10.1038/s41523-022-00402-4

    Article  CAS  Google Scholar 

  29. Lai, X., Li, Y., & Gao, M. (2018). Biochanin A regulates the growth and migration of NSCLC through suppressing the VEGF/VEGFR2 signaling pathway. Oncology Research Featuring Preclinical and Clinical Cancer Therapeutics. https://doi.org/10.3727/096504018x15321979274728

    Article  Google Scholar 

  30. Lefloch, R., Pouysségur, J., & Lenormand, P. (2009, March 1). Total ERK1/2 activity regulates cell proliferation. Cell Cycle Cell Cycle. https://doi.org/10.4161/cc.8.5.7734

  31. Dong, Q., Yang, B., Han, J. G., Zhang, M. M., Liu, W., Zhang, X., … Duan, S. F. (2019). A novel hydrogen sulfide-releasing donor, HA-ADT, suppresses the growth of human breast cancer cells through inhibiting the PI3K/AKT/mTOR and Ras/Raf/MEK/ERK signaling pathways. Cancer Letters, 455, 60–72. https://doi.org/10.1016/j.canlet.2019.04.031

Download references

Author information

Authors and Affiliations

Authors

Contributions

Jutao Li and Junqin Xu have been involved in manuscript preparation and working. Yuxin Sun has been involved in working the scientific part of the manuscript. Ruolan Fu has been involved in manuscript preparation and working. Dan Ye has framed the work and revised the manuscript for submission.

Corresponding author

Correspondence to Dan Ye.

Ethics declarations

Ethics Approval

Not applicable

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Xu, J., Sun, Y. et al. An Insight on Synergistic Anti-cancer Efficacy of Biochanin A and Sulforaphane Combination Against Breast Cancer. Appl Biochem Biotechnol 196, 992–1007 (2024). https://doi.org/10.1007/s12010-023-04584-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-023-04584-w

Keywords

Navigation