Skip to main content
Log in

Construction of Super-Hydrophobic Lignocellulosic Nanofibrils Aerogels as Speedy Oil Absorbents

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Lignocellulosic nanofibrils (LCNF) aerogels have a three-dimensional structure, with large specific surface area, low density, which is promising to be developed into a new type of adsorbent with high absorption capacity. However, LCNF aerogels have the problem of simultaneous oil and water adsorption. This high hydrophilicity directly leads to low adsorption efficiency in oil-water systems. This paper suggests a facile and economical method for the synthesis of biocompatible CE-LCNF aerogels using LCNF and Castor oil triglycidyl ether (CE) was successfully established. The use of LCNF enabled aerogels to possess remarkably uniform pore size and structural integrity, while the introduction of hydrophobic silica produced stable superhydrophobicity for more than 50 days at room temperature. These aerogels presented desirable hydrophobicity (131.6°), excellent oil adsorption capacity (62.5 g/g) and excellent selective sorption property, making them ideal absorbents for oil spill cleaning. The effects of ratios of LCNF to CE composition, temperatures and oil viscosity on the oil adsorption performance of aerogels were estimated. The results displayed that the aerogels had the maximum adsorption capacity at 25 °C. The pseudo-secondary model had higher validity in oil adsorption kinetic theories compared to the pseudo-first-order model. The CE-LCNF aerogels were excellent super-absorbents for oil removal. Moreover, the LCNF was renewable and nontoxic, which has the potential to promote environmental applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Lee, J. H., Kim, D. H., Han, S. W., Kim, B. R., Park, E. J., Jeong, M.-G., Kim, J. H., & Kim, Y. D. (2016). Fabrication of superhydrophobic fibre and its application to selective oil spill removal. Chemical Engineering Journal, 289, 1–6.

    Article  CAS  Google Scholar 

  2. Chen, J., Zhang, W., Wan, Z., Li, S., & Fei, Y. (2019). Oil spills from global tankers: Status review and future governance. Journal of Cleaner Production, 227, 20–32.

    Article  Google Scholar 

  3. Zhang, B., Matchinski, E. J., Chen, B., Ye, X., Jing, L., & Lee, K. (2019). Marine oil spills—Oil pollution, sources and effects. World seas: An environmental evaluation. Academic Press., 3, 391–406.

    Google Scholar 

  4. Nzila, A., & Musa, M. M. (2021). Current knowledge and future challenges on bacterial degradation of the highly complex petroleum products asphaltenes and resins. Frontiers in Environmental Science, 9, 779644.

    Article  Google Scholar 

  5. Korhonen, J. T., Kettunen, M., Ras, R. H., & Ikkala, O. (2011). Hydrophobic nanocellulose aerogels as floating, sustainable, reusable, and recyclable oil absorbents. ACS Applied Materials & Interfaces, 3, 1813–1816.

    Article  CAS  Google Scholar 

  6. Varjani, S. J. (2017). Microbial degradation of petroleum hydrocarbons. Bioresource Technology, 223, 277–286.

    Article  CAS  PubMed  Google Scholar 

  7. Deng, Y.-F., Zhang, D., Zhang, N., Huang, T., Lei, Y.-Z., & Wang, Y. (2021). Electrospun stereocomplex polylactide porous fibers toward highly efficient oil/water separation. Journal of Hazardous Materials, 407, 124787.

    Article  CAS  PubMed  Google Scholar 

  8. Angelova, D., Uzunov, I., Uzunova, S., Gigova, A., & Minchev, L. (2011). Kinetics of oil and oil products adsorption by carbonized rice husks. Chemical Engineering Journal, 172, 306–311.

    Article  CAS  Google Scholar 

  9. Wang, L., Liu, C., Huang, Q., An, Y., Fan, J., & Liu, Y. (2019). A polyamide 6–organic montmorillonite composite sponge by large-scale solution foaming as a reusable and efficient oil and organic pollutant sorbent. Soft Matter, 15, 9066–9075.

    Article  CAS  PubMed  Google Scholar 

  10. Wen, Q., Di, J., Jiang, L., Yu, J., & Xu, R. (2013). Zeolite-coated mesh film for efficient oil–water separation. Chemical Science, 4, 591–595.

    Article  CAS  Google Scholar 

  11. Gao, R., Xiao, S., Gan, W., Liu, Q., Amer, H., Rosenau, T., Li, J., & Lu, Y. (2018). Mussel adhesive-inspired design of superhydrophobic nanofibrillated cellulose aerogels for oil/water separation. ACS Sustainable Chemistry & Engineering, 6, 9047–9055.

    Article  CAS  Google Scholar 

  12. Bian, H., Dong, M., Chen, L., Zhou, X., Wang, R., Jiao, L., Ji, X., & Dai, H. (2020). On-demand regulation of lignocellulosic nanofibrils based on rapid fractionation using acid hydrotrope: Kinetic study and characterization. ACS Sustainable Chemistry & Engineering, 8, 9569–9577.

    Article  CAS  Google Scholar 

  13. Chen, S., Chen, Y., Li, D., Xu, Y., & Xu, F. (2021). Flexible and sensitivity-adjustable pressure sensors based on carbonized bacterial nanocellulose/wood-derived cellulose nanofibril composite aerogels. ACS Applied Materials & Interfaces, 13(7), 8754–8763.

    Article  CAS  Google Scholar 

  14. Zhang, H., Zhang, G., Zhu, H., Wang, F., Xu, G., Shen, H., & Wang, J. (2021b). Multiscale kapok/cellulose aerogels for oil adsorption: The study on structure and oil adsorption properties. Industrial Crops and Products, 171, 113902.

    Article  CAS  Google Scholar 

  15. Li, Z., Shao, L., Hu, W., Zheng, T., Lu, L., Cao, Y., & Chen, Y. (2018). Excellent reusable chitosan/cellulose aerogel as an oil and organic solvent absorbent. Carbohydrate Polymers, 191, 183–190.

    Article  CAS  PubMed  Google Scholar 

  16. Tarrés, Q., Oliver-Ortega, H., Llop, M., Pèlach, M., Delgado-Aguilar, M., & Mutjé, P. (2016). Effective and simple methodology to produce nanocellulose-based aerogels for selective oil removal. Cellulose., 23, 3077–3088.

    Article  Google Scholar 

  17. Wang, L., Li, K., Copenhaver, K., Mackay, S., Lamm, M. E., Zhao, X., Dixon, B., Wang, J., Han, Y., Neivandt, D., Johnson, D. A., Walker, C. C., Ozcan, S., & Gardner, D. J. (2021). Review on nonconventional fibrillation methods of producing cellulose nanofibrils and their applications. Biomacromolecules., 22, 4037–4059.

    Article  CAS  PubMed  Google Scholar 

  18. Mondal, S. (2017). Preparation, properties and applications of nanocellulosic materials. Carbohydrate Polymers, 163, 301–316.

    Article  CAS  PubMed  Google Scholar 

  19. Bian, H., Duan, S., Wu, J., Fu, Y., Yang, W., Yao, S., Zhang, Z., Xiao, H., Dai, H., & Hu, C. (2022). Lignocellulosic nanofibril aerogel via gas phase coagulation and diisocyanate modification for solvent absorption. Carbohydrate Polymers, 15(278), 119011.

    Article  Google Scholar 

  20. Zou, X., Yao, L., Zhou, S., Chen, G., Wang, S., Liu, X., & Jiang, Y. (2022). Sulfated lignocellulose nanofibril based composite aerogel towards adsorption-photocatalytic removal of tetracycline. Carbohydrate Polymers, 296, 119970.

    Article  CAS  PubMed  Google Scholar 

  21. Fu, Q., Tan, J., Han, C., Zhang, X., Fu, B., Wang, F., & Zhu, X. (2020). Synthesis and curing properties of castor oil-based triglycidyl ether epoxy resin. Polymers for Advanced Technologies, 31, 2552–2560.

    Article  CAS  Google Scholar 

  22. Luo, J., Huang, K., Zhou, X., & Xu, Y. (2020). Preparation of highly flexible and sustainable lignin-rich nanocellulose film containing xylonic acid (XA), and its application as an antibacterial agent. International Journal of Biological Macromolecules, 163, 1565–1571.

    Article  CAS  PubMed  Google Scholar 

  23. Bian, H., Chen, L., Gleisner, R., Dai, H., & Zhu, J. (2017). Producing wood-based nanomaterials by rapid fractionation of wood at 80 °C using a recyclable acid hydrotrope. Green Chemistry, 19(14), 3370–3379.

    Article  CAS  Google Scholar 

  24. Gupta, P., Singh, B., Agrawal, A. K., & Maji, P. K. (2018). Low density and high strength nanofibrillated cellulose aerogel for thermal insulation application. Materials and Design, 158, 224–236.

    Article  CAS  Google Scholar 

  25. Feng, J., Le, D., Nguyen, S. T., Nien, V. T. C., Jewell, D., & Duong, H. M. (2016). Silica cellulose hybrid aerogels for thermal and acoustic insulation applications, Colloids Surf. A Physicochem. Eng. Asp, 506, 298–305.

    Article  CAS  Google Scholar 

  26. Zhang, H., Wang, J., Xu, G., Xu, Y., Wang, F., & Shen, H. (2021). Ultralight, hydrophobic, sustainable, cost-effective and floating kapok/microfibrillated cellulose aerogels as speedy and recyclable oil superabsorbents. Journal of Hazardous Materials, 406, 124758.

    Article  CAS  PubMed  Google Scholar 

  27. Gong, X., Wang, Y., Zeng, H., Betti, M., & Chen, L. (2019). Highly porous, hydrophobic, and compressible cellulose nanocrystals/pva aerogels as recyclable absorbents for oil-water separation. ACS Sustainable Chemistry & Engineering, 7, 11118–11128.

    Article  CAS  Google Scholar 

  28. Peng, D., Zhao, J., Liang, X., Guo, X., & Li, H. (2023). Corn stalk pith-based hydrophobic aerogel for efficient oil sorption. Journal of Hazardous Materials, 448, 130954.

    Article  CAS  PubMed  Google Scholar 

  29. Thai, Q. B., Nguyen, S. T., Ho, D. K., Tran, T. D., Huynh, D. M., Do, N. H. N., Luu, T. P., Le, P. K., Le, D. K., Phan-Thien, N., & Duong, H. M. (2020). Cellulose-based aerogels from sugarcane bagasse for oil spill-cleaning and heat insulation applications. Carbohydrate Polymers, 228, 115365.

    Article  PubMed  Google Scholar 

  30. Adebajo, M. O., Frost, R. L., Kloprogge, J. T., Carmody, O., & Kokot, S. (2003). Porous materials for oil spill cleanup: A review of synthesis and absorbing properties. Journal of Porous Materials, 10, 159–170.

    Article  CAS  Google Scholar 

  31. Wahi, R., Chuah, L. A., Choong, T. S. Y., Ngaini, Z., & Nourouzi, M. M. (2013). Oil removal from aqueous state by natural fibrous sorbent: An overview. Separation and Purification Technology, 113, 51–63.

    Article  CAS  Google Scholar 

  32. Nguyen, S. T., Feng, J., Le, N. T., Le, A. T., Hoang, N., Tan, V. B., & Duong, H. M. (2013). Cellulose aerogel from paper waste for crude oil spill cleaning. Industrial and Engineering Chemistry Research, 52, 18386–18391.

    Article  CAS  Google Scholar 

  33. Nguyen, S. T., Feng, J., Ng, S. K., Wong, J. P., Tan, V. B., & Duong, H. M. (2014). Advanced thermal insulation and adsorption properties of recycled cellulose aerogels. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 445, 128–134.

    Article  CAS  Google Scholar 

  34. Feng, J., Nguyen, S. T., Fan, Z., & Duong, H. M. (2015). Advanced fabrication and oil adsorption properties of super-hydrophobic recycled cellulose aerogels. Chemical Engineering Journal, 270, 168–175.

    Article  CAS  Google Scholar 

Download references

Data Availability

Not applicable.

Code Availability

Not applicable.

Funding

This work is supported by the Nanjing Tech University.

Author information

Authors and Affiliations

Authors

Contributions

Bujun Huang: conceptualization, methodology, validation, data curation, visualization, writing—review and editing, writing—original draft.

Juncheng Jiang: conceptualization, methodology, supervision, validation, writing—review and editing, funding acquisition, project administration.

All authors read and approved the final manuscript.

Corresponding author

Correspondence to Bujun Huang.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, B., Jiang, J. Construction of Super-Hydrophobic Lignocellulosic Nanofibrils Aerogels as Speedy Oil Absorbents. Appl Biochem Biotechnol 196, 220–232 (2024). https://doi.org/10.1007/s12010-023-04560-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-023-04560-4

Keyword

Navigation