Skip to main content

Advertisement

Log in

Green Synthesis of ZnO and V-Doped ZnO Nanoparticles Using Vinca rosea Plant Leaf for Biomedical Applications

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The present work focused on the synthesis of Vinca rosea leaf extract derived ZnO and vanadium-doped ZnO nanoparticles (V-ZnO NPs). The chemical composition, structural, and morphology of ZnO and vanadium-doped ZnO NPs were examined by FTIR, XRD, and SEM–EDX. The FTIR confirmed the presence of functional groups corresponding to ZnO and vanadium-doped ZnO NPs. SEM–EDX clearly indicated the morphology of synthesised NPs; the hexagonal crystal of NPs was confirmed from XRD. In addition, the cytotoxic effect of ZnO and V-ZnO NPs was estimated against the breast cancer (MCF-7) cell line. From the assay, Vinca rosea (V. rosea) capped ZnO NPs have shown improved cytotoxic activity than that of Vinca rosea capped V-ZnO NPs. ZnO and vanadium-doped ZnO NPs showed the strongest antibacterial activity against Enterococcus, Escherichia coli, Candida albicans, and Aspergillus niger. The α-amylase inhibition assays demonstrated antidiabetic activity of synthesised NPs. From the assay test, results obtained Vinca rosea capped ZnO nanoparticles prepared using the green approach showed high effective antioxidant, antidiabetic activity, and anticancer activity than vanadium-doped ZnO NPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

Authors are ready to provide the data if it is required during review process.

References

  1. Yahya, E. B., & Alqadhi, A. M. (2021). Recent trends in cancer therapy: A review on the current state of gene delivery. Life Sciences, 269(December 2020), 119087. https://doi.org/10.1016/j.lfs.2021.119087

    Article  CAS  PubMed  Google Scholar 

  2. Cohen, L., Hack, T. F., De Moor, C., Katz, J., & Goss, P. E. (2000). The effects of type of surgery and time on psychological adjustment in women after breast cancer treatment. Annals of Surgical Oncology, 7(6), 427–434. https://doi.org/10.1007/s10434-000-0427-9

    Article  CAS  PubMed  Google Scholar 

  3. Mortezaee, K., et al. (2021). Synergic effects of nanoparticles-mediated hyperthermia in radiotherapy/chemotherapy of cancer. Life Sciences, 269(December 2020), 119020. https://doi.org/10.1016/j.lfs.2021.119020

    Article  CAS  PubMed  Google Scholar 

  4. Martino, E., et al. (2018). Vinca alkaloids and analogues as anti-cancer agents: Looking back, peering ahead. Bioorganic & Medical Chemistry Letters, 28(17), 2816–2826. https://doi.org/10.1016/j.bmcl.2018.06.044

    Article  CAS  Google Scholar 

  5. Golubnitschaja, O., et al. (2017). EPMA world congress: Traditional forum in predictive, preventive and personalised medicine for multi-professional consideration and consolidation. EPMA Journal, 8(S1), 54. https://doi.org/10.1007/s13167-017-0108-4

    Article  Google Scholar 

  6. Jayarambabu, N., Venkatappa Rao, T., Rakesh Kumar, R., Akshaykranth, A., Shanker, K., & Suresh, V. (2021). Anti-hyperglycemic, pathogenic and anticancer activities of Bambusa arundinacea mediated zinc oxide nanoparticles. Materials Today Communications, 26(September), 101688. https://doi.org/10.1016/j.mtcomm.2020.101688

    Article  CAS  Google Scholar 

  7. Menazea, A. A., El-Newehy, M. H., Thamer, B. M., & El-Naggar, M. E. (2021). Preparation of antibacterial film-based biopolymer embedded with vanadium oxide nanoparticles using one-pot laser ablation. Journal of Molecular Structure, 1225, 129163. https://doi.org/10.1016/j.molstruc.2020.129163

    Article  CAS  Google Scholar 

  8. Kulkarni, A., Kumar, G. S., Kaur, J., & Tikoo, K. (2014). A comparative study of the toxicological aspects of vanadium pentoxide and vanadium oxide nanoparticles. Inhalation Toxicology, 26(13), 772–788. https://doi.org/10.3109/08958378.2014.960106

    Article  CAS  PubMed  Google Scholar 

  9. Shanker, K., Naradala, J., Mohan, G. K., Kumar, G. S., & Pravallika, P. L. (2017). A sub-acute oral toxicity analysis and comparative: In vivo anti-diabetic activity of zinc oxide, cerium oxide, silver nanoparticles, and Momordica charantia in streptozotocin-induced diabetic Wistar rats. RSC Advances, 7(59), 37158–37167. https://doi.org/10.1039/c7ra05693a

    Article  CAS  Google Scholar 

  10. Raj, S., Kumar, S., & Chatterjee, K. (2016). Facile synthesis of vanadia nanoparticles and assessment of antibacterial activity and cytotoxicity. Materials Technology, 31(10), 562–573. https://doi.org/10.1080/10667857.2016.1147130

    Article  CAS  Google Scholar 

  11. Khan, F., Jeong, G.-J., Singh, P., Tabassum, N., Mijakovic, I., & Kim, Y.-M. (2022). Retrospective analysis of the key molecules involved in the green synthesis of nanoparticles. Nanoscale, 14(40), 14824–14857. https://doi.org/10.1039/D2NR03632K

    Article  CAS  PubMed  Google Scholar 

  12. Kyene, M. O., et al. (2023). Synthesis and characterization of ZnO nanomaterial from Cassia sieberiana and determination of its anti-inflammatory, antioxidant and antimicrobial activities. Scientific African, 19, e01452. https://doi.org/10.1016/j.sciaf.2022.e01452

    Article  CAS  Google Scholar 

  13. Salem, S. S., & Fouda, A. (2021). Green synthesis of metallic nanoparticles and their prospective biotechnological applications: An overview. Biological Trace Element Research, 199(1), 344–370. https://doi.org/10.1007/s12011-020-02138-3

    Article  CAS  PubMed  Google Scholar 

  14. Su, X., et al. (2014). Preparation, dielectric property and infrared emissivity of Fe-doped ZnO powder by coprecipitation method at various reaction time. Ceramics International, 40(4), 5307–5311. https://doi.org/10.1016/j.ceramint.2013.10.107

    Article  CAS  Google Scholar 

  15. Xi, W. S., et al. (2020). Cytotoxicity of vanadium oxide nanoparticles and titanium dioxide-coated vanadium oxide nanoparticles to human lung cells. Journal of Applied Toxicology, 40(5), 567–577. https://doi.org/10.1002/jat.3926

    Article  CAS  PubMed  Google Scholar 

  16. El Ghoul, J. (2016). Synthesis of vanadium doped ZnO nanoparticles by sol–gel method and its characterization. Journal of Materials Science: Materials in Electronics, 27(2), 2159–2165. https://doi.org/10.1007/s10854-015-4006-z

    Article  CAS  Google Scholar 

  17. Zargar, R. A., Arora, M., Ahmad, M., & Hafiz, A. K. (2015). Synthesis and characterization of vanadium doped zinc oxide thick film for chemical sensor application. Journal of Materials, 2015, 1–6. https://doi.org/10.1155/2015/196545

    Article  CAS  Google Scholar 

  18. Simo, A., Drah, M., Sibuyi, N. R. S., Nkosi, M., Meyer, M., & Maaza, M. (2018). Hydrothermal synthesis of cobalt-doped vanadium oxides: Antimicrobial activity study. Ceramics International, 44(7), 7716–7722. https://doi.org/10.1016/j.ceramint.2018.01.198

    Article  CAS  Google Scholar 

  19. Dowlatababdi, F. H., Amiri, G., & MohammadiSichani, M. (2017). Investigation of the antimicrobial effect of silver doped zinc oxide nanoparticles. Nanomedicine Journal, 4(1), 50–54. https://doi.org/10.22038/nmj.2017.8053

    Article  CAS  Google Scholar 

  20. Mishra, A., et al. (2022). Metal nanoparticles against multi-drug-resistance bacteria. Journal of Inorganic Biochemistry, 237, 111938. https://doi.org/10.1016/j.jinorgbio.2022.111938

    Article  CAS  PubMed  Google Scholar 

  21. Alshameri, A. W., & Owais, M. (2022). Antibacterial and cytotoxic potency of the plant-mediated synthesis of metallic nanoparticles Ag NPs and ZnO NPs: A review. OpenNano, 8, 100077. https://doi.org/10.1016/j.onano.2022.100077

    Article  Google Scholar 

  22. Barman, H., Kr Das, S., & Roy, A. (2018). Future of nano science in technology for prosperity: A policy paper. Nanoscience & Technology: Open Access, 5(1), 1–5. https://doi.org/10.15226/2374-8141/5/1/00151

    Article  Google Scholar 

  23. Das, S. K., et al. (2017). Nano-science for agrochemicals in plant protection. Popular Kheti, 5(4), 173–175.

    Google Scholar 

  24. Das, S. K. (2017). Nanoparticles advanced characterization techniques: A view point. Journal Atoms and Molecules, 7(4), 1091–1098.

    CAS  Google Scholar 

  25. Pillai, A. M., et al. (2020). Green synthesis and characterization of zinc oxide nanoparticles with antibacterial and antifungal activity. Journal of Molecular Structure, 1211, 128107. https://doi.org/10.1016/j.molstruc.2020.128107

    Article  CAS  Google Scholar 

  26. Zhang, Y., Zhang, X., Zhang, L., Alarfaj, A. A., Hirad, A. H., & Alsabri, A. E. (2021). Green formulation, chemical characterization, and antioxidant, cytotoxicity, and anti-human cervical cancer effects of vanadium nanoparticles: A pre-clinical study. Arabian Journal of Chemistry, 14(6), 103147. https://doi.org/10.1016/j.arabjc.2021.103147

    Article  CAS  Google Scholar 

  27. Rasheed, P., et al. (2020). Green synthesis of vanadium oxide-zirconium oxide nanocomposite for the degradation of methyl orange and picloram. Materials Research Express, 7(2), 025011. https://doi.org/10.1088/2053-1591/ab6fa2

    Article  CAS  Google Scholar 

  28. Aliyu, A. O., Garba, S., & Bognet, O. (2017). Green synthesis, characterization and antimicrobial activity of vanadium nanoparticles using leaf extract of Moringa oleifera. International Journal of Scientific Research, 16(1), 231. https://doi.org/10.9790/5736-1101014248

    Article  CAS  Google Scholar 

  29. Gupta, M., Tomar, R. S., Kaushik, S., Mishra, R. K., & Sharma, D. (2018). Effective antimicrobial activity of green ZnO nano particles of Catharanthus roseus. Frontiers in Microbiology, 9, 2030. https://www.frontiersin.org/article/10.3389/fmicb.2018.02030.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Pandey, S. N., & Khurja, M. (2020). “Phytochemicals and pharmacological studies of catharanthus.” World Journal of Pharmaceutical Research, 9(July), 1407–1415. https://doi.org/10.20959/wjpr20207-17993

    Article  CAS  Google Scholar 

  31. Lahare, R. P., Yadav, H. S., Dashahre, A. K., & Kumar Bisen, Y. (2020). “An updated review on phytochemical and pharmacological properties of Catharanthus rosea.” Saudi Journal of Medical and Pharmaceutical Sciences, 6, 759–766. https://doi.org/10.36348/sjmps.2020.v06i12.007

    Article  Google Scholar 

  32. Chandrasekaran, S., Anbazhagan, V., & Anusuya, S. (2022). Green route synthesis of ZnO nanoparticles using Senna auriculata aqueous flower extract as reducing agent and evaluation of its antimicrobial, antidiabetic and cytotoxic activity. Applied Biochemistry and Biotechnology. https://doi.org/10.1007/s12010-022-03900-0

    Article  PubMed  Google Scholar 

  33. Sati, S. C., Kour, G., Bartwal, A. S., & Sati, M. D. (2020). Biosynthesis of metal nanoparticles from leaves of Ficus palmata and evaluation of their anti-inflammatory and anti-diabetic activities. Biochemistry, 59(33), 3019–3025. https://doi.org/10.1021/acs.biochem.0c00388

    Article  CAS  PubMed  Google Scholar 

  34. Álvarez-Chimal, R., et al. (2022). Influence of the particle size on the antibacterial activity of green synthesized zinc oxide nanoparticles using Dysphania ambrosioides extract, supported by molecular docking analysis. Arabian Journal of Chemistry, 15(6), 103804. https://doi.org/10.1016/j.arabjc.2022.103804

    Article  CAS  Google Scholar 

  35. Rabiee, N., et al. (2022). Green metal-organic frameworks (MOFs) for biomedical applications. Microporous and Mesoporous Materials, 335, 111670. https://doi.org/10.1016/j.micromeso.2021.111670

    Article  CAS  Google Scholar 

  36. Wirunchit, S., Gansa, P., & Koetniyom, W. (2021). Synthesis of ZnO nanoparticles by ball-milling process for biological applications. Materials Today: Proceedings, 47, 3554–3559. https://doi.org/10.1016/j.matpr.2021.03.559

    Article  CAS  Google Scholar 

  37. Dhanaraj, K., Suresh Kumar, C., Socrates, S. H., VinothArulraj, J., & Suresh, G. (2021). A comparative analysis of microwave assisted natural (Murex virgineus shell) and chemical nanohydroxyapatite: structural, morphological and biological studies. Journal of the Australian Ceramic Society, 57(1), 173–183. https://doi.org/10.1007/s41779-020-00522-9

    Article  CAS  Google Scholar 

  38. Riaz, H. R., Hashmi, S. S., Khan, T., Hano, C., Giglioli-Guivarc’h, N., & Abbasi, B. H. (2018). Melatonin-stimulated biosynthesis of anti-microbial ZnONPs by enhancing bio-reductive prospective in callus cultures of Catharanthus roseus var. Alba. Artificial Cells, Nanomedicine, and Biotechnology, 46(sup2), 936–950. https://doi.org/10.1080/21691401.2018.1473413

    Article  CAS  PubMed  Google Scholar 

  39. Chikkanna, M. M., Neelagund, S. E., & Rajashekarappa, K. K. (2018). Green synthesis of Zinc oxide nanoparticles (ZnO NPs) and their biological activity. SN Applied Sciences, 1(1), 117. https://doi.org/10.1007/s42452-018-0095-7

    Article  CAS  Google Scholar 

  40. El Ghoul, J., Barthou, C., & El Mir, L. (2012). Synthesis, structural and optical properties of nanocrystalline vanadium doped zinc oxide aerogel. Physica E: Low-dimensional Systems and Nanostructures, 44(9), 1910–1915. https://doi.org/10.1016/j.physe.2012.05.020

    Article  CAS  Google Scholar 

  41. Patil, P. P., Bohara, R. A., Meshram, J. V., Nanaware, S. G., & Pawar, S. H. (2019). Hybrid chitosan-ZnO nanoparticles coated with a sonochemical technique on silk fibroin-PVA composite film: A synergistic antibacterial activity. International Journal of Biological Macromolecules, 122, 1305–1312. https://doi.org/10.1016/j.ijbiomac.2018.09.090

    Article  CAS  PubMed  Google Scholar 

  42. Chandrasekaran, S., Anusuya, S., & Anbazhagan, V. (2022). Anticancer, anti-diabetic, antimicrobial activity of zinc oxide nanoparticles: A comparative analysis. Journal of Molecular Structure, 1263, 133139. https://doi.org/10.1016/j.molstruc.2022.133139

    Article  CAS  Google Scholar 

  43. Fu, L., & Fu, Z. (2015). Plectranthus amboinicus leaf extract–assisted biosynthesis of ZnO nanoparticles and their photocatalytic activity. Ceramics International, 41(2, Part A), 2492–2496. https://doi.org/10.1016/j.ceramint.2014.10.069

    Article  CAS  Google Scholar 

  44. ArockiaSelvi, J., Arthanareeswari, M., Pushpamalini, T., Rajendran, S., & Vignesh, T. (2020). Effectiveness of vinca rosea leaf extract as corrosion inhibitor for mild steel in 1 N HCl medium investigated by adsorption and electrochemical studies. International Journal of Corrosion and Scale Inhibition, 9(4), 1429–1443. https://doi.org/10.17675/2305-6894-2020-9-4-15

    Article  CAS  Google Scholar 

  45. Duffy, L. L., Osmond-McLeod, M. J., Judy, J., & King, T. (2018). Investigation into the antibacterial activity of silver, zinc oxide and copper oxide nanoparticles against poultry-relevant isolates of Salmonella and Campylobacter. Food Control, 92, 293–300. https://doi.org/10.1016/j.foodcont.2018.05.008

    Article  CAS  Google Scholar 

  46. Babayevska, N., et al. (2022). ZnO size and shape effect on antibacterial activity and cytotoxicity profile. Science and Reports, 12(1), 8148. https://doi.org/10.1038/s41598-022-12134-3

    Article  CAS  Google Scholar 

  47. Sirelkhatim, A., et al. (2015). Review on zinc oxide nanoparticles: Antibacterial activity and toxicity mechanism. Nano-Micro Lett., 7(3), 219–242. https://doi.org/10.1007/s40820-015-0040-x

    Article  CAS  Google Scholar 

  48. Dutta, R. K., Nenavathu, B. P., Gangishetty, M. K., & Reddy, A. V. R. (2012). Studies on antibacterial activity of ZnO nanoparticles by ROS induced lipid peroxidation. Colloids Surfaces B Biointerfaces, 94, 143–150. https://doi.org/10.1016/j.colsurfb.2012.01.046

    Article  CAS  PubMed  Google Scholar 

  49. Singh, T. A., Sharma, A., Tejwan, N., Ghosh, N., Das, J., & Sil, P. C. (2021). A state of the art review on the synthesis, antibacterial, antioxidant, antidiabetic and tissue regeneration activities of zinc oxide nanoparticles. Advances in Colloid and Interface Science, 295, 102495. https://doi.org/10.1016/j.cis.2021.102495

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

C. Senthil Kumar thanks Vinayaka Mission’s Research Foundation (Deemed to be University) for providing University Research Fellowship to carry out the research work.

Author information

Authors and Affiliations

Authors

Contributions

One of the authors, C. Senthilkumar, has performed literature survey, data collection, and drafted the manuscript. Interpretation of results was done by all the authors. The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Corresponding author

Correspondence to Venkattappan Anbazhagan.

Ethics declarations

Ethical Approval

This study does not involve human participation or animal testing. Hence, ethical approval is not required.

Consent to Participate

Not applicable.

Consent to Publish

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chandrasekaran, S., Anbazhagan, V. Green Synthesis of ZnO and V-Doped ZnO Nanoparticles Using Vinca rosea Plant Leaf for Biomedical Applications. Appl Biochem Biotechnol 196, 50–67 (2024). https://doi.org/10.1007/s12010-023-04546-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-023-04546-2

Keywords

Navigation