Skip to main content
Log in

Eco-friendly Synthesis of Zinc Oxide Nanoparticles by Clerodendrum heterophyllum Leaf Extract and Their Biological Applications

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

Clerodendrum heterophyllum, a member of the Lamiaceae family, has been traditionally used in herbal medicine. In this study, zinc oxide nanoparticles (ZnONPs) were synthesized, which led to a color change from greenish yellow to a pale white precipitate. The synthesized ZnONPs were then subjected to various characterization techniques including UV–visible spectrum, FTIR, XRD, SEM-EDAX, and TEM. The UV–visible spectrum analysis revealed a peak at 366 nm, indicating the presence of ZnONPs. FTIR analysis confirmed the presence of 15 different functional groups in the nanoparticles, while XRD results confirmed their crystalline structure. SEM analysis showed the formation of spherical-shaped nanoparticles, and EDAX analysis confirmed the elemental composition of zinc and oxygen. TEM results indicated that the size of the ZnONPs ranged between 4.68 and 8.65 nm. The antibacterial activities of the ZnONPs were evaluated against Staphylococcus aureus and Escherichia coli, showing high effectiveness with inhibition zones of 13 mm and 11 mm, respectively. The ZnONPs also exhibited antioxidant activity, as demonstrated by their capability to scavenge DPPH (2,2-diphenyl-1-picrylhydrazyl), ABTS (2,2-azino-bis-3-ethylbenzothiazoline-6-sulphonic acid), and H2O2 (hydrogen peroxide radical) assay. Moreover, in HepG2 liver cancer cells, the ZnONPs showed maximum inhibitory effects at 66.86%. In conclusion, this research highlights the biological properties of C. heterophyllum, particularly its potential as a viable resource for the synthesis of ZnONPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The datasets used and analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. Wasana, K. G. P., Attanayake, A. P., Jayatilaka, K. A. P. W., & Weerarathna, T. P. (2021). Antidiabetic activity of widely used medicinal plants in the Sri Lankan traditional healthcare system: New insight to medicinal flora in Sri Lanka. Evidence-Based Complementary and Alternative Medicine, 1–12, 6644004. https://doi.org/10.1155/2021/6644004

  2. Bag, S., Mondal, A., Majumder, A., & Banik, A. (2022). Tea and its phytochemicals: Hidden health benefits & modulation of signaling cascade by phytochemicals. Food Chemistry, 371, 131098. https://doi.org/10.1016/j.foodchem.2021.131098

    Article  Google Scholar 

  3. Varghese, S. M., Parisi, S., Singla, R. K., & Begum, A. A. (2022). Trends in food chemistry, nutrition and technology in Indian sub-continent. Springer Nature. https://doi.org/10.1155/2021/6644004

    Article  Google Scholar 

  4. Kirubakaran, D., Selvam, K., Prakash, P., Manimegalai, P., Shivakumar, M. S., & SenthilNathan, S. (2023). Preparation and characterization of biogenic silver nanoparticles using Strobilanthes cordifolia (Vahl) JRI wood leaves and its biological applications. Biotechnology and Applied Biochemistry, 70(2), 870–884. https://doi.org/10.1002/bab.2406

    Article  Google Scholar 

  5. Liao, S., Omage, S. O., Bormel, L., Kluge, S., Schubert, M., Wallert, M., & Lorkowski, S. (2022). Vitamin E and metabolic health: Relevance of interactions with other micronutrients. Antioxidants, 11(9), 1785. https://doi.org/10.3390/antiox11091785

    Article  Google Scholar 

  6. Pandey, S., Dubey, B., & Niranjan, A. K. (2022). Comprehending the presence and application of antiradicals and antioxidants within the human body. Journal of Drug Delivery and Therapeutics, 12(4-S), 236–238.

    Article  Google Scholar 

  7. Loganathan, S., Manimaran, K., Mutamimurugan, K., Prakash, D. G., & Subashini, R. (2023). Synthesis of zinc oxide nanoparticles by Pterolobium hexapetalum (Roth) Santapau and Wagh extract and their biological applications. Biomass Conversion and Biorefinery, 1–12, 2190–6823. https://doi.org/10.1007/s13399-023-04732-6

    Article  Google Scholar 

  8. Jasrotia, P., Nagpal, M., Mishra, C. N., Sharma, A. K., Kumar, S., Kamble, U., & Singh, G. P. (2022). Nanomaterials for postharvest management of insect pests: Current state and future perspectives. Frontiers in Nanotechnology, 3, 100. https://doi.org/10.3389/fnano.2021.811056

    Article  Google Scholar 

  9. Loganathan, S., Selvam, K., Sivasakthi, V., Prakash, P., Yamuna, M., Lalitha, K., & Senthil Nathan, S. (2021). Phytochemical and pharmacological evaluation of methanolic extract of Knoxia sumatrensis leaves. Journal of Herbs, Spices & Medicinal Plants, 27(2), 200–217. https://doi.org/10.1080/10496475.2021.1891179

    Article  Google Scholar 

  10. Aldalbahi, A., Alterary, S., Ali AbdullrahmanAlmoghim, R., Awad, M. A., Aldosari, N. S., Fahad Alghannam, S., & Abdulrahman Alrashed, R. (2020). Greener synthesis of zinc oxide nanoparticles: Characterization and multifaceted applications. Molecules, 25(18), 4198. https://doi.org/10.3390/molecules25184198

    Article  Google Scholar 

  11. Anjum, S., Hashim, M., Malik, S. A., Khan, M., Lorenzo, J. M., Abbasi, B. H., & Hano, C. (2021). Recent advances in zinc oxide nanoparticles (ZnO NPs) for cancer diagnosis, target drug delivery, and treatment. Cancers, 13(18), 4570. https://doi.org/10.3390/cancers13184570

    Article  Google Scholar 

  12. Chekroun, M. Z., Benali, M. A., Yahiaoui, I. E., Debab, M., Belmehdi, M. Z., & Tabet-Derraz, H. (2022). Optical properties behavior of ZnO nanoparticles deposited on glass in the ultraviolet–visible spectral range: Experimental and numerical study. Optical Materials, 132, 112769. https://doi.org/10.53063/synsint.2021.1477

    Article  Google Scholar 

  13. Jeyakumar, V., Sundaram, P., & Ramapathiran, N. (2023). Artificial intelligence-based predictive tools for life-threatening diseases. System Design for Epidemics Using Machine Learning and Deep Learning (pp. 123–152). Springer International Publishing.

    Chapter  Google Scholar 

  14. Shafiee, P., Nafchi, M. R., Eskandarinezhad, S., Mahmoudi, S., & Ahmadi, E. (2021). Sol-gel zinc oxide nanoparticles: Advances in synthesis and applications. Synthesis and Sintering, 1(4), 242–254. https://doi.org/10.53063/synsint.2021.1477

    Article  Google Scholar 

  15. Srivastava, N., & Patel, T. (2007). Clerodendrum and health care: An overview. Medicinal and Aromatic Plants and Biotechnology, 1(1), 142–150.

    Google Scholar 

  16. Harborne, A. J. (1998). Phytochemical methods a guide to modern techniques of plant analysis. Springer Science & Business Media. https://doi.org/10.3390/antiox9080681

    Article  Google Scholar 

  17. Ghareeb, D. A., Saleh, S. R., Seadawy, M. G., Nofal, M. S., Abdulmalek, S. A., Hassan, S. F., & El Demellawy, M. A. (2021). Nanoparticles of ZnO/berberine complex contract COVID-19 and respiratory co-bacterial infection in addition to elimination of hydroxychloroquine toxicity. Journal of Pharmaceutical Investigation, 51, 735–757. https://doi.org/10.1007/s40005-021-00544-w

    Article  Google Scholar 

  18. Ashraf, H., Meer, B., Iqbal, J., Ali, J. S., Andleeb, A., Butt, H., Zia, M., Mehmood, A., Nadeem, M., Drouet, S., & Blondeau, J. P. (2023). Comparative evaluation of chemically and green synthesized zinc oxide nanoparticles: Their in vitro antioxidant, antimicrobial, cytotoxic and anticancer potential towards HepG2 cell line. Journal of Nanostructure in Chemistry, 13(2), 243–261. https://doi.org/10.1007/s40097-021-00460-3

    Article  Google Scholar 

  19. Moreno, E. K., de Macedo, I. Y., Batista, E. A., Machado, F. B., Santos, G. R., Andrade, D. M., & Gil, E. S. (2022). Evaluation of antioxidant potential of commercial Cinnamon samples and its vasculature effects. Oxidative Medicine and Cellular Longevity, 2022. https://doi.org/10.1155/2022/1992039

    Article  Google Scholar 

  20. Mosmann, T. (1983). Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. Journal of Immunological Methods, 65(1–2), 55–63. https://doi.org/10.1016/0022-1759(83)90303-4

    Article  Google Scholar 

  21. Monks, A., Scudiero, D., Skehan, P., Shoemaker, R., Paull, K., Vistica, D., Hose, C., Langley, J., Cronise, P., Vaigro-Wolff, A., Gray-Goodrich, M., Campbell, H., Mayo, J., & Boyd, M. (1991). Feasibility of a high-flux anticancer drug screen using a diverse panel of cultured human tumor cell lines. Journal of the National Cancer Institute, 83, 757–766. https://doi.org/10.1093/jnci/83.11.757

    Article  Google Scholar 

  22. Estella, O. U., William, A. C., Patrick, O., Ikenna, C., Mba, T., Obinna, O., & Ginikachukwu, U. (2022). Evaluation of the analgesic and antipyretic activity of methanol extract of Combretum bauchiense Hutch & Dalziel (Combretaceae) leaves. Phytomedicine Plus, 2(1), 100166. https://doi.org/10.1016/j.phyplu.2021.100166

    Article  Google Scholar 

  23. Park, J. K., Rupa, E. J., Arif, M. H., Li, J. F., Anandapadmanaban, G., Kang, J. P., & Kang, S. C. (2021). Synthesis of zinc oxide nanoparticles from Gynostemma pentaphyllum extracts and assessment of photocatalytic properties through malachite green dye decolorization under UV illumination-A green approach. Optik, 239, 166249. https://doi.org/10.1016/j.ijleo.2020.166249

    Article  Google Scholar 

  24. Karam, S. T., & Abdulrahman, A. F. (2022). Green synthesis and characterization of ZnO nanoparticles by using Thyme plant leaf extract. In Photonics, 9(8), 594. https://doi.org/10.3390/photonics9080594. MDPI.

    Article  Google Scholar 

  25. Manimegalai, P., Selvam, K., Loganathan, S., Kirubakaran, D., Shivakumar, M. S., Govindasamy, M., & Bahajjaj, A. A. A. (2023). Green synthesis of zinc oxide (ZnO) nanoparticles using aqueous leaf extract of Hardwickia binata: Their characterizations and biological applications. Biomass Conversion and Biorefinery, 1–16, 2190–6823. https://doi.org/10.1007/s13399-023-04279-6

    Article  Google Scholar 

  26. Abbasi, B. A., Iqbal, J., Ahmad, R., Zia, L., Kanwal, S., Mahmood, T., & Chen, J. T. (2019). Bioactivities of Geranium wallichianum leaf extracts conjugated with zinc oxide nanoparticles. Biomolecules, 10(1), 38. https://doi.org/10.3390/biom10010038

    Article  Google Scholar 

  27. Adegoke, H. I., & Gbenga, A. A. (2023). Bio-assisted synthesis of zinc oxide nanoparticles from Mimosa pudica aqueous leave extract: Structure and antibacterial activity. Chemistry Africa, 1–14(6), 1283–1296. https://doi.org/10.1007/s42250-022-00581-4

  28. Jan, H., Shah, M., Usman, H., Khan, M. A., Zia, M., Hano, C., & Abbasi, B. H. (2020). Biogenic synthesis and characterization of antimicrobial and antiparasitic zinc oxide (ZnO) nanoparticles using aqueous extracts of the Himalayan Columbine (Aquilegia pubiflora). Frontiers in Materials, 7, 249. https://doi.org/10.3389/fmats.2020.00249

    Article  Google Scholar 

  29. Ramesh, P., Rajendran, A., & Ashokkumar, M. (2022). Biosynthesis of zinc oxide nanoparticles from Phyllanthus Niruri plant extract for photocatalytic and antioxidant activities. International Journal of Environmental Analytical Chemistry, 1–12, 0306–7319. https://doi.org/10.1080/03067319.2022.2041004

    Article  Google Scholar 

  30. Karthika, V., Ramya, V., Kalaiselvi, V., & Shanmathi, S. (2021). Synthesis and characterization of zinc oxide nanoparticles using Justiciaadhatoda leaf extract. International Journal of Advanced Science and Engineering, 7(3), 1839–1842. https://doi.org/10.29294/IJASE.7.3.2021.1839-1842

    Article  Google Scholar 

  31. Aldeen, T. S., Mohamed, H. E. A., & Maaza, M. (2022). ZnO nanoparticles prepared via a green synthesis approach: Physical properties, photocatalytic and antibacterial activity. Journal of Physics and Chemistry of Solids, 160, 110313. https://doi.org/10.1016/j.jpcs.2021.110313

    Article  Google Scholar 

  32. Al-Ghamdi, S. A., Alkathiri, T. A., Alfarraj, A. E., Alatawi, O. M., Alkathiri, A. S., Panneerselvam, C., & Khasim, S. (2022). Green synthesis and characterization of zinc oxide nanoparticles using Camellia sinensis tea leaf extract and their antioxidant, anti-bactericidal and anticancer efficacy. Research on Chemical Intermediates, 48(11), 4769–4783. https://doi.org/10.1007/s11164-022-04845-z

    Article  Google Scholar 

  33. Gecer, E. N., Erenler, R., Temiz, C., Genc, N., & Yildiz, I. (2022). Green synthesis of silver nanoparticles from Echinacea purpurea (L.) Moench with antioxidant profile. Particulate Science and Technology, 40(1), 50–57. https://doi.org/10.1080/02726351.2021.1904309

    Article  Google Scholar 

  34. Ahmed, B., Solanki, B., Zaidi, A., Khan, M. S., & Musarrat, J. (2019). Bacterial toxicity of biomimetic green zinc oxide nanoantibiotic: Insights into ZnONP uptake and nanocolloid–bacteria interface. Toxicology Research, 8(2), 246–261. https://doi.org/10.1039/c8tx00267c

    Article  Google Scholar 

  35. Dulta, K., Koşarsoy Ağçeli, G., Chauhan, P., Jasrotia, R., & Chauhan, P. K. (2021). Ecofriendly synthesis of zinc oxide nanoparticles by Carica papaya leaf extract and their applications. Journal of Cluster Science, 1–15(33), 603–617. https://doi.org/10.1007/s10876-020-01962-w

    Article  Google Scholar 

  36. Bhatti, J. S., Sehrawat, A., Mishra, J., Sidhu, I. S., Navik, U., Khullar, N., & Reddy, P. H. (2022). Oxidative stress in the pathophysiology of type 2 diabetes and related complications: Current therapeutics strategies and future perspectives. Free Radical Biology and Medicine. https://doi.org/10.1016/j.freeradbiomed.2022.03.019

    Article  Google Scholar 

  37. Garg, V., & Dutt, R. (2023). Evaluation of antioxidant, antibacterial and anticancer activity of fruits and leaves extract of Manilkara zapota against A431 skin cancer cell lines. South African Journal of Botany, 153, 219–226. https://doi.org/10.1016/j.sajb.2022.12.023

    Article  Google Scholar 

  38. Senthamarai, M. D., & Malaikozhundan, B. (2022). Synergistic action of zinc oxide nanoparticle using the unripe fruit extract of Aegle marmelos (L.) antibacterial, antibiofilm, radical scavenging and ecotoxicological effects. Materials Today Communications, 30, 103228. https://doi.org/10.1016/j.mtcomm.2022.103228

    Article  Google Scholar 

  39. Loganathan, S., Selvam, K., Padmavathi, G., Shivakumar, M. S., Senthil-Nathan, S., Sumathi, A. G., & Almutairi, S. M. (2022). Biological synthesis and characterization of Passiflora subpeltata Ortega aqueous leaf extract in silver nanoparticles and their evaluation of antibacterial, antioxidant, anti-cancer and larvicidal activities. Journal of King Saud University-Science, 34(3), 101846. https://doi.org/10.1016/j.jksus.2022.101846

    Article  Google Scholar 

  40. Amuthavalli, P., Hwang, J. S., Dahms, H. U., Wang, L., Anitha, J., Vasanthakumaran, M., & Singh, S. (2021). Zinc oxide nanoparticles using plant Lawsonia inermis and their mosquitocidal, antimicrobial, anticancer applications showing moderate side effects. Scientific Reports, 11(1), 1–13. https://doi.org/10.1038/s41598-021-88164-0

    Article  Google Scholar 

  41. Alharthi, M. N., Ismail, I., Bellucci, S., Jaremko, M., Abo-Aba, S. E., & Abdel Salam, M. (2023). Biosynthesized zinc oxide nanoparticles using Ziziphus jujube plant extract assisted by ultrasonic irradiation and their biological applications. Separations, 10(2), 78. https://doi.org/10.3390/separations10020078

    Article  Google Scholar 

  42. Rakgotho, T., Ndou, N., Mulaudzi, T., Iwuoha, E., Mayedwa, N., & Ajayi, R. F. (2022). Green-synthesized zinc oxide nanoparticles mitigate salt stress in Sorghum bicolor. Agriculture, 12(5), 597. https://doi.org/10.3390/agriculture12050597

    Article  Google Scholar 

  43. Xiong, P., Huang, X., Ye, N., Lu, Q., Zhang, G., Peng, S., & Liu, Y. (2022). Cytotoxicity of metal-based nanoparticles: From mechanisms and methods of evaluation to pathological manifestations. Advanced Science, 9(16), 2106049. https://doi.org/10.1002/advs.202106049

    Article  Google Scholar 

  44. Kirubakaran, D., Selvam, K., Prakash, P., Shivakumar, M. S., & Rajkumar, M. (2023). In-vitro antioxidant, antidiabetic, anticholinergic activity of iron/copper nanoparticles synthesized using Strobilanthes cordifolia leaf extract. OpenNano, 14, 100188. https://doi.org/10.1016/j.onano.2023.100188

    Article  Google Scholar 

Download references

Acknowledgements

The authors recognize and thank the Department of Botany, School of Life Sciences, Periyar University, Salem, Tamilnadu-636 011, India, for providing infrastructural facilities.

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

Dharmalingam Kirubakaran: conceptualization, investigation, methodology, writing and original draft. Kuppusamy Selvam: conceptualization, supervision, writing – review and editing. Muthugounder Subaramanian Shivaswamy: formal analysis, review and editing. Mathiazhakan Lavanya, Vairakkannu Sivasakthi, and Ameer Baig Ali Baig: formal and software analysis.

Corresponding author

Correspondence to Kuppusamy Selvam.

Ethics declarations

Ethical Approval

Not applicable.

Informed Consent

None.

Consent for Publication

All the authors agreed to publish the data in this journal.

Research Involving Humans and Animals Statement

None.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kirubakaran, D., Selvam, K., Lavanya, M. et al. Eco-friendly Synthesis of Zinc Oxide Nanoparticles by Clerodendrum heterophyllum Leaf Extract and Their Biological Applications. BioNanoSci. 13, 2252–2264 (2023). https://doi.org/10.1007/s12668-023-01222-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-023-01222-x

Keywords

Navigation